
PERIYAR UNIVERSITY

 NAAC 'A++' Grade - State University

NIRF Rank 56 – State Public University Rank 25

SALEM - 636 011, Tamil Nadu, India.

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

MASTER OF SCIENCE IN MATHEMATICS

SEMESTER - II

ELECTIVE COURSE: NUMBER THEORY AND CRYPTOGRAPHY

(Candidates admitted from 2024 onwards)

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

M.Sc., MATHEMATICS 2024 admission onwards

ELECTIVE

Number Theory and Cryptography

Prepared by:

Centre for Distance and Online Education (CDOE)
Periyar University
Salem 636011

Contents

1 Elementary Number Theory-I 5

1.1 Time estimates for doing arithmetic . 5

1.2 Divisibility and the Euclidean algorithm 19

2 Elementary Number Theory-II 35

2.1 Congruences . 35

2.2 Some applications to factoring . 48

3 Finite Fields and Quadratic Residues 61

3.1 Basic definitions and Properties of a field. 61

3.2 Finite Fields . 66

3.3 Quadratic residues and reciprocity . 82

4 Cryptography 109

4.1 Some simple cryptosystems. 109

4.2 Enciphering Matrices . 125

5 Public Key Cryptography 157

5.1 The idea of public key cryptography. 157

5.2 RSA . 171

1

SYLLABUS: NUMBER THEORY AND CRYPTOG-

RAPHY

Objectives:

The objective of this course is to give elementary ideas from number theory which will

have applications in cryptology.

Unit I: Elementary Number theory-I- Time estimates for doing arithmetic - divisi-

bility and the Euclidean algorithm

Unit II: Elementary Number theory-II- Congruences - Some applications to factor-

ing

Unit III: Finite Fields and Quadratic Residues - Finite Fields - Quadratic residues

and reciprocity

Unit IV: Cryptography - Some simple cryptosystems - Enciphering matrices.

Unit V: Public Key Cryptography - Public key cryptography - RSA

References:

1. Neal Koblit, A course in Number Theory and Cryptography, Springer - Verlag,

New York, 2nd edition, 2002.

Suggested Reading:

1. I. Niven and H. S. Zuckermann, An Introduction to Theory of Numbers (Edition

3), Wiley Eastern Ltd, New Delhi 1976

2. D. M. Burton, Elementary Number Theory, Brown Publishers, Iowa, 1989

3. K. Ireland and M. Rosen, A classic Introduction to Modern Number Theory,

Springer - Verlag, 1972

4. N. Koblit, Algebraic Aspects of Cryptography, Springer-Verlag, 1998.

2

3

UNIT - 1

4

Unit 1

Elementary Number Theory-I

Objectives.

By studying this unit, the students will

1. recall the notation and facts from elementary number theory.

2. know the time estimates for doing arithmetic.

3. understand the big - O notation.

4. recall divisibility and the properties of divisibility.

5. know to apply the Euclidean algorithm for finding the g.c.d. of two

numbers.

1.1 Time estimates for doing arithmetic

Numbers in different bases: A non negative integer n written to the

base b is a notation for n of the form (dk−1dk−2 · · · d1d0)b, where the d’s

are digits, i.e., symbols for the integers between 0 and b−1; this notation

5

means that n = dk−1b
k−1 +dk−2b

k−2 + · · ·+d1b+d0. If the first digit dk−1

is not zero, we call n a k-digit base-b number. Any number between bk−1

and bk is a k-digit number to the base b. We shall omit the parentheses

and subscript (...)b in the case of the usual decimal system (b = 10) and

occasionally in other cases as well, if the choice of base is clear from the

context, especially when we’re using the binary system (b = 2). Since it

is sometimes useful to work in bases other than 10, one should get used

to doing arithmetic in an arbitrary base and to converting from one base

to another. Fractions can also be expanded in any base, i.e., they can be

represented in the form (dk−ldk−2..d1d0d−ld−2...)b.

Remark 1.1.1. When b > 10 it is customary to use letters for the digits

beyond 9. One could also use letters for all of the digits.

Example 1.1.2. 1. (11001001)2 = 201.

2. When b = 26 let us use the letters A − Z for the digits 0 − 25,

respectively. Then (BAD)26 = 679, whereas (B.AD)26 = 1 3
676

Example 1.1.3. Multiply 160 and 199 in the base 7.

Solution.

3 1 6

4 0 3

1 2 5 4

1 6 0 3 0

1 6 1 5 5 4

6

Example 1.1.4. Divide (11001001)2 by (100111)2, and divide (HAPPY)26

by (SAD)26.

Solution.

100111

101 110
100111)

11001001

100111

101101

100111

110

SAD

KD
MLP

SAD)
HAPPY

GYBE

COLY

CCAJ

MLP

Example 1.1.5. Convert 106 to the bases 2, 7 and 26 (using the letters

A− Z as digits in the latter case).

Solution. To convert a number n to the base b, one first gets the last

digit (the one’s place) by dividing n by b and taking the remainder. Then

replace n by the quotient and repeat the process to get the second-to-last

digit d1, and so on. Hence

106 = (11110100001001000000)2 = (11333311)7 = (CEXHO)26.

Example 1.1.6. Convert π = 3.1415926... to the base 2 (carrying out

the computation 15 places to the right of the point) and to the base 26

(carrying out 3 places to the right of the point).

Solution. After taking care of the integer part, the fractional part is

converted to the base b by multiplying by b, taking the integer part of the

result as d−1, then starting over again with the fractional part of what

7

you now have, successively finding d−2, d−3, · · · . In this way one obtains:

3.1415926 · · · = (11.001001000011111 · · ·)2 = (D.DRS · · ·)26.

Number of digits. As mentioned before, an integer n satisfying bk−1 ≤

n < bk has k digits to the base b. By the definition of logarithms, this gives

the following formula for the number of base-b digits (here “[]”denotes

the greatest integer function):

number of digits = [logb n] + 1 =
[log n

log b

]
+ 1

where here (and from now on) “log”means the natural logarithm loge.

Bit operations. Let us start with a very simple arithmetic problem, the

addition of two binary integers, for example:

1 1 1 1 0 0 0

+ 0 0 1 1 1 1 0

1 0 0 1 0 1 1 0

Suppose that the number are both k bits long (the word “bit” is short for

“binary digit”); if one of the two integers has fewer bits than the other,

we fill in zero to the left, as in this example, to make them have the same

length. Although this example involves small integers (adding 120 to 30),

we should think of k as perhaps being very large, like 500 or 1000.

8

Remark 1.1.7. (Procedure for adding k-bit numbers:)

1. Look at the top and bottom bit, and also at whether there’s a carry

above the top bit.

2. If both bits are 0 and there is no carry, then put down 0 and move

on.

3. If either (a) both bits are 0 and there is a carry, or (b) one of the

bits is 0, the other is 1, and there is no carry, then put down 1 and

move on.

4. If either (a) one of the bits is 0, the other is 1, and there is a carry,

or else (b) both bits are 1 and there is no carry, then put down 0,

put a carry in the next column, and move on.

5. If both bits are 1 and there is a carry, then put down 1, put a carry

in the next column, and move on

Doing this procedure once is called a bit operation. Adding two k-bit

numbers requires k bit operations.

Example 1.1.8. Find an upper bound for the number of bit operations

required to compute n!.

Solution. We use the following procedure. First multiply 2 by 3, then

the result by 4, then the result of that by 5, · · · , until you get to n. At

the (j − 1)-th step (j = 2, 3, · · · , n − 1), we are multiplying j! by j + 1.

Hence we have n− 2 steps, where each step involves multiplying a partial

9

product (i.e., j!) by the next integer. The partial products will start to

be very large. As a worst case estimate for the number of bits a partial

product has, let’s take the number of binary digits in the very last product,

namely, in n!.

To find the number of bits in a product, we use the fact that the

number of digits in the product of two numbers is either the sum of the

number of digits in each factor or else 1 fewer than that sum. From this

it follows that the product of n k-bit integers will have at most nk bits.

Thus, if n is a k-bit integer - which implies that every integer less than n

has at most k bits - then n! has at most nk bits.

Hence, in each of the n − 2 multiplications needed to compute n!,

we are multiplying an integer with at most k bits (namely j + 1) by an

integer with at most nk bits (namely j!). This requires at most nk2 bit

operations. We must do this n − 2 times. So the total number of bit

operations is bounded by (n − 2)nk2 = n(n − 2)([log2 n] + 1)2. Roughly

speaking, the bound is approximately n2(log2 n)2.

Example 1.1.9. Find an upper bound for the number of bit operations

required to multiply a polynomial ∑ aixi of degree ≤ n1 and a polyno-

mial ∑ bjxj of degree ≤ n2 whose coefficients are positive integers ≤ m.

Suppose n2 ≤ n1.

Solution. To compute ∑
i+j=v aibj, which is the coefficient of xv in the

product polynomial (here 0 ≤ v ≤ nl + n2) requires at most n2 + 1 multi-

10

plications and n2 additions. The numbers being multiplied are bounded

by m, and the numbers being added are each at most m2; but since we

have to add the partial sum of up to n2 such numbers we should take

n2m
2 as our bound on the size of the numbers being added.

Thus, in computing the coefficient of xv the number of bit operations

required is at most

(n2 + 1)(log2m+ 1)2 + n2(log2(n2m
2) + 1).

Since there are nl+n2+1 values of v, our time estimate for the polynomial

multiplication is

(nl + n2 + 1)((n2 + 1)(log2m+ 1)2 + n2(log2(n2m
2) + 1)).

A slightly less rigorous bound is obtained by dropping the 1′s, there by

obtaining an expression having a more compact appearance:

n2(n1 + n2)
log2

(logm)2

log2 + (log n2 + 2log m)
 .

Remark 1.1.10. If we set n = nl ≥ n2 and make the assumption that

m > 16 and m ≥ √n2 (which usually holds in practice), then the latter

expression can be replaced by the much simpler 4n2(log2m)2.

Example 1.1.11. Find an upper bound for the number of bit operations

it takes to compute the binomial coefficient
(
n
m

)
.

Solution. Since
(
n
m

)
=
(

n
n−m

)
, without loss of generality we may assume

11

that m ≤ n/2. Let us use the following procedure to compute
(
n
m

)
=

n(n− l)(n−2) · · · (n−m+1)/(2.3 · · ·−m). We have m−1 multiplications

followed by m − 1 divisions. In each case the maximum possible size of

the first number in the multiplication or division is n(n−1)(n−2) · · · (n−

m+ 1) < nm, and a bound for the second number is n. Thus, we see that

a bound for the total number of bit operations is 2(m − l)m([log 2n] +

1)2, which for large m and n is essentially 2m2(log2n)2. Notation for

summarizing situation with time estimates:

The big-O notation. Suppose that f(n) and g(n) are functions of the

positive integers n which take positive (but not necessarily integer) values

for all n. We say that f(n) = O(g(n)) (or simply that f = O(g)) if there

exists a constant C such that f(n) is always less than C.g(n). For example,

2n2 + 3n− 3 = O(n2) (namely, it is not hard to prove that the left side is

always less than 3n2).

Because we want to use the big-O notation in more general situations,

we shall give a more all-encompassing definition. Namely, we shall allow

f and g to be functions of several variables, and we shall not be concerned

about the relation between f and g for small values of n. Just as in the

study of limits as n→∞ in calculus, here also we shall only be concerned

with large values of n.

Definition 1.1.12. Let f(n1, n2, · · · , nr) and g(n1, n2, · · · , nr) be two

functions whose domains are subsets of the set of all r-tuples of positive

integers. Suppose that there exist constants B and C such that whenever

12

all of the nj are greater than B the two functions are defined and positive,

and f(n1, n2, · · · , nr) < Cg(n1, n2, · · · , nr). In that case we say that f is

bounded by g and we write f = O(g).

Note that the “= ”in the notation f = O(g) should be thought of as

more like a “<”and the big-O should be thought of as meaning ”some

constant multiple.”

Example 1.1.13. 1. Let f(n) be any polynomial of degree d whose

leading coefficient is positive. Then it is easy to prove that f(n) =

O(nd). More generally, one can prove that f = O(g) in any situation

when f(n)
g(s) has a finite limit as n→∞.

2. If ε is any positive number, no matter how small, then one can prove

that log n = O(nε) (i.e., for large 11, the log function is smaller than

any power function, no matter how small the power). In fact. this

follows because lim
n→∞

log n
nε

, as one can prove using l’Hospital’s rule.

3. If f(n) denotes the number k of binary digits in n, then it follows

from the above formulas for k that f(n) = O(1ogn). Also notice that

the same relation holds if f(n) denotes the number of base-b digits,

where b is any fixed base. On the other hand, suppose that the base b

is not kept fixed but is allowed to increase, and we let f(n, b) denote

the number of base-b digits. Then we would want to use the relation

f(n, b) = O

(log n
log b

)
.

4. We have: Time (n −m) = O(log n. logm), where the left hand side

means the number of bit operations required to multiply n by m.

13

Illustration: In our use, the functions f(n) or f(n1, n2, · · · , nr) will often

stand for the amount of time it takes to perform an arithmetic task with

the integer n or with the set of integers n1, n2, · · · , nr as input. We will

want to obtain fairly simple-looking functions g(n) as our bounds. When

we do this, however, we do not want to obtain functions g(n) which are

much larger than necessary, since that would give an exaggerated impres-

sion of how long the task will take (although, from a strictly mathematical

point of view, it is not incorrect to replace g(n) by any larger function in

the relation f = O(g)).

Roughly speaking, the relation f(n) = O(nd) tells us that the function

f increases approximately like the d-th power of the variable.

For example, if d = 3, then it tells us that doubling n has the effect of

increasing f by about a factor of 8. The relation f(n) = O(logd n) (we

write logd n to mean (log n)d) tells us that the function increases approx-

imately like the d-th power of the number of binary digits in n. That is

because, up to a constant multiple, the number of bits is approximately

log n (namely, it is within 1 of being log n
log 2 = 1.4427 log n). Thus, for ex-

ample, if f (n) = 0(log3 n), then doubling the number of bits in n (which

is, of course, a much more drastic increase in the size of n than merely

doubling n) has the effect of increasing f by about a factor of 8.

Note that to write f(n) = O(1) means that the function f is bounded

by some constant.

Remark 1.1.14. We have seen that, if we want to multiply two numbers

14

of about the same size, we can use the estimate Time(k − bit.k − bit) =

O(k2). It should be noted that much work has been done on increasing

the speed of multiplying two k-bit integers when k is large. Using clever

techniques of multiplication that are much more complicated than the

grade-school method we have been using, mathematicians have been able

to find a procedure for multiplying two k-bit integers that requires only

O(k log k log log k) bit operations. This is better than O(k2), and even

better than O(k1+ε) for any ε > 0, no matter how small. However, in

what follows we shall always be content to use the rougher estimates

above for the time needed for a multiplication.

In general, when estimating the number of bit operations required to

do something, the first step is to decide upon and write down an outline

of a detailed procedure for performing the task. An explicit step-by-step

procedure for doing calculations is called an algorithm. Of course, there

may be many different algorithms for doing the same thing. One may

choose to use the one that is easiest to write down, or one may choose to

use the fastest one known, or else one may choose to compromise and make

a trade-off between simplicity and speed. The algorithm used above for

multiplying n by m is far from the fastest one known. But it is certainly

a lot faster than repeated addition (adding n to itself m times).

Example 1.1.15. Estimate the time required to convert a k-bit integer

to its representation in the base 10.

Solution. Let n be a k-bit integer written in binary. The conversion

15

algorithm is as follows. Divide 10 = (1010)2 into n. The remainder

- which will be one of the integers 0, 1, 10, 11, 100, 101, 110, 111, 1000, or

1001 - will be the ones digit d0. Now replace n by the quotient and repeat

the process, dividing that quotient by (1010)2, using the remainder as

d1 and the quotient as the next number into which to divide (1010)2.

This process must be repeated a number of times equal to the number

of decimal digits in n, which is
[log n
log 10

]
+ 1 = O(k). Then we’re done.

(We might want to take our list of decimal digits, i.e., of remainders

from all the divisions, and convert them to the more familiar notation

by replacing 0, 1, 10, 11, · · · , 1001 by 0, 1, 2, 3, · · · , 9, respectively.) How

many bit operations does this all take? Well, we have O(k) divisions,

each requiring O(4k) operations (dividing a number with at most k bits

by the 4-bit number (1010)2). But O(4k) is the same as O(k) (constant

factors don’t matter in the big-O notation), so we conclude that the total

number of bit operations is O(k).O(k) = O(k2). If we want to express

this in terms of n rather than k, then since k = O(1ogn), we can write

Time(convert n to decimal) = O(log2 n).

Example 1.1.16. Estimate the time required to convert a k-bit integer

n to its representation in the base b, where b might be very large.

Solution. Using the same algorithm as in Example 10, except dividing

now by the l-bit integer b, we find that each division now takes longer (if

l is large), namely, O(kl) bit operations. How many times do we have to

16

divide? Here notice that the number of base-b digits in n is O
(
k

l

)
. Thus,

the total number of bit. operations required to do all of the necessary

divisions is O
(
k

l

)
.O(kl) = O(k2). Our estimate for the conversion time

does not depend upon the base to which we’re converting (no matter how

large it may be). This is because the greater time required to find each

digit is offset by the fact that there are fewer digits to be found.

Example 1.1.17. Express in terms of the O-notation the time required

to compute (a) n!, (b)
(
n
m

)
(see Examples 6 and 8).

Solution. (a) O
(
n2 log2 n

)
(b) O

(
m2 log2 n

)
.

In concluding this section, we make a definition that is fundamental in

computer science and the theory of algorithms.

Definition 1.1.18. An algorithm to perform a computation involving

integers n1, n2, · · · , nr of k1, k2, · · · , kr bits, respectively, is said to be

a polynomial time algorithm if there exist integers d1, d2, · · · , dr such

that the number of bit operations required to perform the algorithm is

O
(
kd1

1 k
d2
2 · · · kdrr

)
.

Thus, the usual arithmetic operations +,−,×,÷ are examples of poly-

nomial time algorithms; so is conversion from one base to another. On

the other hand, computation of n! is not. (However, if one is satisfied with

knowing n! to only a certain number of significant figures, For example,

its first 1000 binary digits, then one can obtain that by a polynomial time

algorithm using Stirling’s approximation formula for n!.)

17

Let Us Sum Up

• If n is a k−digit base-b number then n = dk−1b
k−1 + dk−2b

k−2 + · · ·+

d1b+ d0, where dk − 1 6= 0.

• To convert a number n to the base b, first gets the one’s place digit

by dividing n by b and take the remainder.

• Adding two k-bit numbers requires k bit operations.

• To find the number of bits in a product, we use the fact that the

number of digits in the product of two numbers is either the sum of

the number of digits in each factor or else 1 fewer than that sum.

• We say that f(n) = O(g(n)) if there exists a constant C such that

f(n) is always less than C.g(n).

• f(n) = O(1) means that the function f is bounded by some constant.

Check your progress 1.1

1. Multiply (212)3 by (122)3.

2. Divide (40122)7 by (126)7.

3. Multiply the binary numbers 101101 and 11001, and divide 10011001

by 1011.

4. In the base 26, with digits A–Z representing 0-25, (a) multiply YES

by NO, and (b) divide JQVXHJ by WE.

18

5. Write e = 2.7182818· · · (a) in binary 15 places out to the right of

the point, and (b) to the base 26 out 3 places beyond the point.

1.2 Divisibility and the Euclidean algorithm

Divisors and divisibility. Given integers a and b, we say that a divides

b (or ”b is divisible by a”) and we write a|b if there exists an integer d

such that b = ad. In that case we call a a divisor of b.

Every integer b > 1 has at least two positive divisors: 1 and b. By a

proper divisor of b we mean a positive divisor not equal to b itself, and by

a nontrivial divisor of b we mean a positive divisor not equal to 1 or b.

A prime number, by definition, is an integer greater than one which

has no positive divisors other than 1 and itself.

A number is called composite if it has at least one nontrivial divisor.

The following properties of divisibility are easy to verify directly from

the definition:

1. If a|b and c is any integer, then a|bc.

2. If a|b and b|c, then a|c.

3. If a|b and a|c, then a|b± c.

If p is a prime number and a is a nonnegative integer, then we use

the notation pα||b to mean that pα is the highest power of p dividing

b, i.e., that pα|b and pα+1 does n.. In that case we say that pα exactly

divides b.

19

The Fundamental Theorem of Arithmetic states that any natural

number n can be written uniquely as a product of prime numbers.

It is customary to write this factorization as a product of distinct

primes to the appropriate powers, listing the primes in increasing

order. For example, 4200 = 23.3.52.7.

Two consequences of the Fundamental Theorem are the following

properties of divisibility:

4. If a prime number p divides ab, then either p|a or p|b.

5. If m|a and n|a, and if m and n have no divisors greater than 1 in

common, then mn|a.

Another consequence of unique factorization is that it gives a system-

atic method for finding all divisors of n once n is written as a product

of prime powers. Namely, any divisor d of n must be a product of the

same primes raised to powers not exceeding the power that exactly di-

vides n. That is, if pα||n, then pβ||d for some β satisfying ≤ β ≤ α. To

find the divisors of 4200, for example, one takes 2 to the 0−, 1−, 2− or

3− power, multiplied by 3 to the 0− or 1− power, times 5 to the 0−, 1−

or 2− power, times 7 to the 0− or 1− power. The number of possible

divisors is thus the product of the number of possibilities for each prime

power, which, in turn, is α + 1. That is, a number n = pα1
1 p

α2
2 · · · pαrr has

(α1 + 1)(α2 + 1) · · · (αr + 1) different divisors. For example, there are 48

divisors of 4200.

Given two integers a and b, not both zero, the greatest common divisor

20

of a and b, denoted g.c.d.(a, b) (or sometimes simply (a, b)) is the largest

integer d dividing both a and b. It is not hard to show that another

equivalent definition of g.c.d.(a, b) is the following: it is the only positive

integer d which divides a and b and is divisible by any other number

which divides both a and b.

If you happen to have the prime factorization of a and b in front of you,

then it’s very easy to write down g.c.d.(a, b). Simply take all primes which

occur in both factorizations raised to the minimum of the two exponents.

For example, comparing the factorization 10780 = 22.5.72.11 with the

above factorization of 4200, we see that g.c.d.(4200, 10780) = 22.5.7 =

140.

The least common multiple of a and b, denoted l.c.m.(a, b). It is the

smallest positive integer that both a and b divide. If you have the fac-

torization of a and b, then you can get l.c.m.(a, b) by taking all of the

primes which occur in either factorization raised to the maximum of the

exponents. It is easy to prove that l.c.m.(a, b) = |ab|/g.c.d.(a, b).

The Euclidean algorithm. The greatest common divisor of two

integers a and b can be found by listing all their positive divisors and

choosing the largest one common to each: but this is cumbersome for large

numbers. Fortunately, there’s a relatively quick way to find g.c.d.(a, b)

even when you have no idea of the prime factors of a or b. It’s called the

Euclidean algorithm.

The Euclidean algorithm works as follows. To find g.c.d.(a, b), where

a > b, we first divide b into a and write down the quotient q1 and the

21

remainder r1 : a = q1b + r1. Next, we perform a second division with b

playing the role of a and r1 playing the role of b : b = q2r1 + r2. Next,

we divide r2 into r1 : r1 = q3r2 + r3. We continue in this way, each time

dividing the last remainder into the second-to-last remainder, obtaining

a new quotient and remainder. When we finally obtain a remainder that

divides the previous remainder, we are done: that final nonzero remainder

is the greatest common divisor of a and b.

Example 1.2.1. Find g.c.d.(1547, 560).

Solution.

1547 = 2 · 560 + 427

560 = 1 · 427 + 133

427 = 3 · 133 + 28

133 = 4 · 28 + 21

28 = 1 · 21 + 7

Since 7|21, we are done: g.c.d.(1547, 560) = 7.

Proposition 1.2.2. The Euclidean algorithm always gives the greatest

common divisor in a finite number of steps. In addition, for a > b

Time (finding g.c.d.(a, b) by the Euclidean algorithm) = O(log3(a)).

Proof. The proof of the first assertion is given in detail in many elemen-

tary number theory textbooks, so we merely summarize the argument.

22

First, it is easy to see that the remainders are strictly decreasing from

one step to the next, and so must eventually reach zero. To see that the

last remainder is the g.c.d., use the second definition of the g.c.d. That

is, if any number divides both a and b, it must divide rl, and then, since

it divides b and rl, it must divide r2, and so on, until you finally conclude

that it must divide the last nonzero remainder. On the other hand, work-

ing from the last row up, one quickly sees that the last remainder must

divide all of the previous remainders and also a and b. Thus, it is the

g.c.d., because the g.c.d. is the only number which divides both a and b

and at the same time is divisible by any other number which divides a

and b.

We next prove the time estimate. The main question that must be

resolved is how many divisions we’re performing. We claim that the

remainders are not only decreasing, but they’re decreasing rather rapidly.

More precisely:

Claim. rj+2 <
1
2rj.

Proof of claim. First, if rj+1 <
1
2rj, then immediately we have

rj+2 < rj+1 <
1
2rj. So suppose that rj+1 >

1
2rj. In that case the next

division gives: rj = 1 · rj+1 + rj+2, and so rj+2 = rj − rj+1 <
1
2rj, as

claimed.

We now return to the proof of the time estimate. Since every two

steps must result in cutting the size of the remainder at least in half, and

since the remainder never gets below 1, it follows that there are at most

23

2 · [log2 a] divisions. This is O(log a). Each division involves numbers no

larger than a, and so takes O(log2 a) bit operations. Thus, the total time

required is O(log a) · O(log2 a) = O(log3 a). This concludes the proof of

the proposition. 2

Remark 1.2.3. If one makes a more careful analysis of the number of bit

operations, taking into account the decreasing size of the numbers in the

successive divisions, one can improve the time estimate for the Euclidean

algorithm to O(log2 a).

Proposition 1.2.4. Let d = g.c.d.(a, b), where a > b. Then there exist

integers u and v such that d = ua+ bv. In other words, the g.c.d. of two

numbers can be expressed as a linear combination of the numbers with

integer coefficients. In addition, finding the integers u and v can be done

in O(log3 a) bit operations.

Outline of proof. The procedure is to use the sequence of equalities in

the Euclidean algorithm from the bottom up, at each stage writing d in

terms of earlier and earlier remainders, until finally you get to a and b. At

each stage you need a multiplication and an addition or subtraction. So

it is easy to see that the number of bit operations is once again O(log3 a).

Example 1.2.5. continued. To express 7 as a linear combination of

1547 and 560, we successively compute:

24

7 = 28− 1 · 21 = 28− 1(133− 4 · 28)

= 5 · 28− 1 · 133 = 5(427− 3 · 133)− 1 · 133

= 5 · 427− 16 · 133 = 5 · 427− 16(560− 1 · 427)

= 21 · 427− 16 · 560 = 21(1547− 2 · 560)− 16 · 560

= 21 · 1547− 58 · 560

Definition 1.2.6. We say that two integers a and b are relatively prime

(or that, ”a is prime to b”) if g.c.d.(a, b) = 1, i.e., if they have no common

divisor greater than 1.

Corollary 1.2.7. If a > b are relatively prime integers, then 1 can be

written as an integer linear combination of a and b in polynomial time,

more precisely, in O(log3a) bit operations.

Definition 1.2.8. Let n be a positive integer. The Euler phi-function

ϕ(n) is defined to be the number of nonnegative integers b less than n

which are prime to n:

ϕ(n)def = |{0 ≤ b < n|g.c.d.(b, n) = 1}| .

It is easy to see that ϕ(1) = 1 and that ϕ(p) = p− 1 for any prime p.

We can also see that for any prime power

ϕ(pα) = pα − pα−1 = pα
(

1− 1
p

)

To see this, it suffices to note that the numbers from 0 to pα−1 which are

not prime to pα are precisely those that are divisible by p, and there are

25

pα−1 of those. In the next section we shall show that the Euler ϕ-function

has a “multiplicative property”that enables us to evaluate ϕ(n) quickly,

provided that we have the prime factorization of n. Namely, if n is written

as a product of powers of distinct primes pα then it turns out that ϕ(n)

is equal to the product of the ϕ(pα).

Let Us Sum Up

• A prime number is an integer greater than 1 which has no positive

divisors other than 1 and itself.

• A number is called composite if it has at least one nontrivial divisor.

• By Fundamental Theorem of Arithmetic, any natural number n can

be written uniquely as a product of prime numbers.

• g.c.d.(a, b) is the largest integer d dividing both a and b.

• l.c.m.(a, b) is the smallest positive integer that both a and b divide.

• The Euclidean algorithm always gives the greatest common divisor

in a finite number of steps.

• The g.c.d. of two numbers can be expressed as a linear combination

of the numbers with integer coefficients.

• If n is a positive integer then Euler phi-function ϕ(n) is the number

of nonnegative integers b less than n which are prime to n.

• If n is written as a product of powers of distinct primes pα then it

turns out that ϕ(n) is equal to the product of the ϕ(pα).

26

Check your progress 1.2

1. How many divisors does 945 have? List them all.

2. Find d = g.c.d.(360, 294) in two ways: (a) by finding the prime factor-

ization of each number, and from that finding the prime factorization

of d; and (b) by means of the Euclidean algorithm.

3. For each of the following pairs of integers, find their greatest common

divisor using the Euclidean algorithm, and express it as an integer

linear combination of the two numbers: (a) 26, 19; (b) 187, 34; (c)

841, 160; (d) 2613, 2171.

Unit Summary

In this unit we have discussed the time estimates for doing arithmetic,

divisibility and the Euclidean algorithm. Also, we have studied how to

apply the Euclidean algorithm to find the g.c.d. of two numbers.

Glossary

Bit operation - Binary digit operation.

Big-O - Some constant multiple.

log - Natural logarithm loge.

Prime number - A positive integer divisible by only 1 and itself.

Composite number - A number divisible by other numbers besides

1 and itself.

Prime factorization - Expression of a number as a product of

27

prime numbers.

Relatively prime - Numbers with g.c.d. of 1.

Exercise 1.

1. By a ”pure repeating” fraction of ”period” f in the base b, we mean

a number between 0 and 1 whose base-b digits to the right of the

point repeat in blocks of f . For example, 1/3 is pure repeating of

period 1 and 1/7 is pure repeating of period 6 in the decimal system.

Prove that a fraction c/d (in lowest terms) between 0 and 1 is pure

repeating of period f in the base b if and only if bf − 1 is a multiple

of d.

2. (a) The ”hexadecimal” system means b = 16 with the letters A-F

representing the tenth through fifteenth digits, respectively. Divide

(131B6C3)16 by (1A2F)16.

(b) Explain how to convert back and forth between binary and hex-

adecimal representations of an integer, and why the time required is

far less than the general estimate given in Example 11 for converting

from binary to base-b.

3. Describe a subtraction-type bit operation in the same way as was

done for an addition-type bit operation in the text (the list of five

alternatives).

4. (a) Using the big-O notation, estimate in terms of a simple function

of n the number of bit operations required to compute 3n in binary.

28

(b) Do the same for n?

5. Let n be a very large integer written in binary. Find a simple algo-

rithm that computes [
√
n] in O(log3n) bit operations

(here [] denotes the greatest integer function)

6. Let n be a positive odd integer. (a) Prove that there is a 1-to-1

correspondence between the divisors of n which are <
√
n and those

that are >
√
n. (This part does not require n to be odd.)

(b) Prove that there is a 1-to-1 correspondence between all of the

divisors of n which are ≥
√
n and all the ways of writing n as a

difference s2− t2 of two squares nonnegative integers. (For example,

15 has two divisors 6, 15 that are ≥
√

15, and 15 = 42− l2 = 82−72.)

(c) List all of the ways of writing 945 as a difference of two squares

of nonnegative integers.

7. Find the power of each prime 2, 3, 5, 7 that exactly divides 100!, and

then write out the entire prime factorization of 100!.

8. Suppose that a is much greater than b. Find a big−O time estimate

for g.c.d.(a, b) that is better than O(log3a).

9. The purpose of this problem is to find a ”best possible” estimate for

the number of divisions required in the Euclidean algorithm. The

Fibonacci numbers can be defined by the rule f1 = 1, f2 = 1, fn+1

= fn + fn−1, for n ≥ 2, or, equivalently, by means of the matrix

equation

29

fn+1 fn

fn fn−1

 =

1 1

1 0


n

.

(a) Suppose that a > b > 0, and it takes k divisions to find g.c.d.(a, b)

by the Euclidean algorithm (the standard version given in the text,

with nonnegative remainders). Show that a ≥ fk+2.

(b) Using the matrix definition of fn, prove that

fn = αn−αm√
5 , where α = 1+

√
5

2 , α′ = 1−
√

5
2 .

(c) Using parts (a) and (b), find an upper bound for k in terms of a.

Compare with the estimate that follows from the proof of Proposition

1.2.2.

10. From algebra we know that a polynomial has a multiple root if and

only if it has a common factor with its derivative; in that case the

multiple roots of f(x) are the roots of g.c.d.(f, f ′). Find the multiple

roots of the polynomial x4 − 2x3 − x2 + 2x+ 1.

Answers :

Check your progress 1.1

1. (112111)3.

2. (260 12
126)7.

3. 10001100101; 1101 1010
1011 .

4. MPJNS; LIKE IT
WE(in other words, JQVXHJ=WE·LIKE + IT) .

5. (a) 10.101101111110000; (b) C.SR0.

30

Check your progress 1.2

1. 16 divisors: 1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315,

945.

3. (a) 1 = 11·19−8·26; (b) 17 = 1·187−5·34; (c) 1 = 205·160−39·841;

(d) 13 = 65 · 2171− 54 · 2613.

Exercise 1.

1. If bf − 1 is a multiple of d, then the fraction can be written in the

form a/(bf − 1), where a is an integer of at most f digits. Then use

the formula for the sum of a geometric progression with initial term

a · b−f and ratio b−f . Conversely, given a pure period −f expansion

x, you find that bfx differs from x by an f -digit integer a, and this

means that x = a/(bf − 1).

2. (a) (BAD)16; (b) no division is required: for example, to go from

binary to hexadecimal simply start from the right and break off the

digits in blocks of four; each four-tuple can be viewed as a hexadec-

imal digit (or replaced by one of the symbols 0-9, A-F).

3. (1) Look at the top and bottom bit and also at whether there’s a

borrow; (2) if both bits are the same and there is no borrow, or if

the top bit is 1, the bottom bit is 0 and there is a borrow, then put

down 0 and move on; (3) if the top bit is 1, the bottom bit is 0 and

there is no borrow, then put down 1 and move on; (4) if the top bit

is 0, the bottom bit is 1 and there is a borrow, then put down 0, put

31

a borrow in the next column, and move on; (5) if both bits are the

same and there is a borrow, or if the top bit is 0, the bottom bit is 1

and there is no borrow, then put down 1, put a borrow in the next

column, and move on.

4. (a) One needs n− 1 multiplications; in each case the partial product

3j has at most O(n) digits and 3 has 2 digits, so there are O(n)

bit operations; thus, the total is O(n2) · (b) Here the partial product

has O(n logn) digits, so each multiplication takes O(n log2n) bit

operations; the total is O(n2 log2n).

5. Suppose that n has k+ 1 bits. As a first approximation to m = [
√
n]

take a 1 followed by [k/2] zeros. Find the digits of m from left to

right after the 1 by each time trying to change the zero to 1, and if

the square of the resulting m is larger than n, putting it back to 0.

6. (a) When a|n write n = ab and let a 7→ b. Given n = ab with a ≥ b,

set s = (a+b)/2 and t = (a−b)/2. Conversely, given n = s2− t2: set

a = s+t, b = s−t to get the reverse correspondence. (c) 4732−4722,

1592 − 1562, 972 − 922, 712 − 642, 572 − 482, 392 − 242, 332 − 122,

312 − 42.

7. 100! = 297 · 348 · 524 · 716 · 119 · 137 · 175 · 195 · 234 · 293 · 313 · 313 · 372 ·

412 · 432 · 53 · 59 · 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97.

8. O(log a log b + log3 b).

9. (a) The remainders decrease at the slowest rate when all of the quo-

32

tients are 1. (b) Write

1 1

1 0

 = BAB−1, where A =

α 0

0 α′

 is the

diagonal matrix made up from the eigenvalues and B is a matrix

whose columns are eigenvectors, e.g., B =

α α′

1 1

.

(c) Since
√

5a ≥
√

5fk+2 = αk+2 − α′k+2 > αk+2 − 1, it follows that

k < (log(1 +
√

5a)/logα) − 2; we can also get the simpler estimate

k < loga/logα. The latter estimate is equal to 1.44042 · · · log2a,

while the estimate in the proof of Proposition 1.2.2 is 2log2a.

10. g.c.d.(f, f ′) = x2−x− 1, and the multiple roots are the golden ratio

and its conjugate (1±
√

5)/2.

References:

1. Neal Koblit, A course in Number Theory and Cryptography, Springer

- Verlag, New York, 2nd edition, 2002.

Suggested Reading:

1. I. Niven and H. S. Zuckermann, An Introduction to Theory of Num-

bers (Edition 3), Wiley Eastern Ltd, New Delhi 1976

2. D. M. Burton, Elementary Number Theory, Brown Publishers, Iowa,

1989

3. K. Ireland and M. Rosen, A classic Introduction to Modern Number

Theory, Springer - Verlag, 1972

4. N. Koblit, Algebraic Aspects of Cryptography, Springer-Verlag, 1998.

33

UNIT - 2

34

Unit 2

Elementary Number Theory-II

Objectives.

By studying this unit, the students will

1. understand the concept of congruences.

2. know to solve the problems using Chinese Remainder Theorem.

3. know to apply the concept of congruences to factoring.

2.1 Congruences

One of the most remarkable relations in number theory is the congru-

ence relation, introduced and developed by the German mathematician

Karl Friedrich Gauss, who is ranked with Archimedes (287-212 B.C.) and

Issac Newton (1642-1727) as one of the greatest mathematicians of all

time.

The congruence relation, as we will see shortly, shares many interesting

35

properties with the equality relation, so it is no accident that the congru-

ence symbol ≡ , invented by Gauss around 1800, parallels the equality

symbol =. The congruence symbol facilitates the study of divisibility

theory and has many fascinating applications.

Definition 2.1.1. Given three integers a, b and m, we say that ”a is

congruent to b modulo m” and write a ≡ b mod m, if the difference a− b

is divisible by m . m is called the modulus of the congruence.

Basic properties of congruences:

The following properties are easily proved directly from the definition:

1. (i)a ≡ a mod m (Reflexive Property);

(ii)a ≡ b mod m if and only if b ≡ a mod m (Symmetric Property);

(iii) if a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m (Tran-

sitive Property).

For fixed m, (i)-(iii) mean that congruence modulo m is an equiva-

lence relation.

2. For fixed m, each equivalence class with respect to congruence mod-

ulo m has one and only one representative between 0 and m− 1. In

other words, any integer is congruent modulo m to one and only one

integer between 0 and m− 1.

The set of equivalence classes (called residue classes) will be denoted

Z/mZ. Any set of representatives for the residue classes is called a

complete set of residues modulo m.

36

3. If a ≡ b mod m and c ≡ d mod m, then a ± c ≡ b ± d mod m

and ac ≡ bd mod m. In other words, congruences (with the same

modulus) can be added, subtracted, or multiplied.

One says that the set of equivalence classes Z/mZ is a commuta-

tive ring, i.e., residue classes can be added, subtracted or multiplied

(with the result not depending on which representatives of the equiv-

alence classes were used), and these operations satisfy the familiar

axioms (associativity, commutativity, additive inverse, etc.).

4. If a ≡ b mod m, then a ≡ b mod d for any divisor d|m.

5. If a ≡ b mod m, a ≡ b mod n, and m and n are relatively prime,

then a ≡ b mod mn.

Proposition 2.1.2. The elements of Z/mZ which have multiplicative in-

verses are those which are relatively prime to m, i.e., the numbers a for

which there exists b with ab ≡ 1 mod m are precisely those a for which

g.c.d.(a,m)= 1. In addition, if g.c.d.(a,m) = 1, then such an inverse b

can be found in O(log3m) bit operations.

Proof. First, if d ≡ g.c.d.(a,m) were greater than 1, we could not have

ab ≡ 1 mod m for any b, because that would imply that d divides ab− 1

and hence divides 1. Conversely, if g.c.d.(a,m) =1, then by Property 2

of congruences we may suppose that a < m. Then , by Proposition 1.2.4,

there exist integers u and v that can be found in O(log3m) bit operations

37

for which ua+ vm = 1. Choosing b = u, we see that m|1− ua = 1− ab,

as desired.

Remark 2.1.3. If g.c.d.(a,m) = 1, then by negative powers a−n mod m

we mean the n-th power of the inverse residue class, i.e., it is represented

by the n-th power of any integer b for which ab ≡ 1 mod m.

Example 2.1.4. Find 160−1 mod 841, i.e., the inverse of 160 modulo

841.

Solution.

841 = 5 · 160 + 41

160 = 3 · 41 + 37

41 = 1 · 37 + 4

37 = 9 · 4 + 1

g.c.d.of(160, 841) = 1

1 = 37− 9 · 4

= 37− 9 · (41− 1 · 37)

= 10 · 37− 9 · 41

= 10 · (160− 3 · 41)− 9 · 41

= 10 · 160− 39 · 41

= 10 · 160− 39 · (841− 5 · 160)

= 205 · 160− 39 · 841

160−1 mod 841 ≡ 205

38

Corollary 2.1.5. If p is a prime number, then every nonzero residue class

has a multiplicative inverse which can be found in O(log3p) bit operations.

We say that the ring Z/pZ is a field. We denote this field Fp, the “field

of p elements.”

Corollary 2.1.6. Suppose we want to solve a linear congruence ax ≡ b

mod m, where without loss of generality we may assume that 0 ≤ a, b <

m. First, if g.c.d.(a,m) = 1, then there is a solution x0 which can be found

in O(log3m) bit operations, and all solutions are of the form x = x0 +mn

for n an integer.

Next, suppose that d = g.c.d.(a,m). There exists a solution if and only

if d|b, and in that case our congruence is equivalent to the congruence

a′x ≡ b′ mod m′, where a′ = a/d, b′ = b/d, m′ = m/d.

Corollary 2.1.7. If a ≡ b mod m and c ≡ d mod m, and if g.c.d.(c,m)

= 1 (in which case also g.c.d.(d,m)= 1), then ac−1 ≡ bd−1 mod m (where

c−1 and d−1 denote any integers which are inverse to c and d modulo m).

Proof. We have c(ac−1 − bd−1) ≡ (acc−1 − bdd−1) ≡ a − b ≡ 0 mod m,

and since m has no common factor with c, it follows that m must divide

ac−1 − bd−1.

Proposition 2.1.8. (Fermat’s Little Theorem) Let p be a prime.

Any integer a satisfies ap ≡ a mod p, and any integer a not divisible by

p satisfies ap−1 ≡ 1 mod p.

Proof. First suppose that p - a. We first claim that the integers

0a, 1a, 2a, 3a, · · · , (p − 1)a are a complete set of residues modulo p. To

39

see this, we observe that otherwise two of them, say ia and ja, would

have to be in the same residue class, i.e., ia ≡ ja mod p. But this would

mean that p|(i − j)a, and since a is not divisible by p, we would have

p|i− j. Since i and j are both less than p, the only way this can happen

is if i = j. We conclude that the integers a, 2a, · · · , (p − 1)a are simply

a rearrangement of 1, 2, · · · , p − 1 when considered modulo p. Thus, it

follows that the product of the numbers in the first sequence is congru-

ent modulo p to the product of the numbers in the second sequence, i.e.,

ap−1(p− 1)! ≡ (p− 1)! mod p. Thus, p|((p− 1)!(ap−1− 1)). Since (p− 1)!

is not divisible by p, we have p|(ap−1 − 1), as required. Finally, if we

multiply both sides of the congruence ap−1 ≡ 1 mod p by a, we get the

first congruence in the statement of the proposition in the case when a is

not divisible by p. But if a is divisible by p, then this congruence ap ≡ a

mod p is trivial, since both sides are ≡ 0 mod p. This concludes the

proof of the proposition.

Corollary 2.1.9. If a is not divisible by p and if n ≡ m mod (p − 1),

then an ≡ am mod p.

Proof. Say n > m. Since p−1|n−m, we have n = m+ c(p−1) for some

positive integer c. Then multiplying the congruence ap−1 ≡ 1 mod m

by itself c times and then by am ≡ am mod p gives the desired result:

an ≡ am mod p.

Example 2.1.10. Find the last base-7 digit in 21000000.

Solution. Let p = 7. Since 1000000 leaves a remainder of 4 when divided

40

by p− 1 = 6, we have 21000000 ≡ 24 = 16 ≡ 2 mod 7, so 2 is the answer.

Proposition 2.1.11. (Chinese Remainder Theorem). Suppose that

we want to solve a system of congruences to different moduli:

x ≡ a1 mod m1,

x ≡ a2 mod m2,

· · · · · ·

x ≡ ar mod mr.

Suppose that each pair of moduli is relatively prime: g.c.d.(mi,mj) =

1 for i 6= j. Then there exists a simultaneous solution x to all of the

congruences, and any two solutions are congruent to one another modulo

M = m1m2 · · ·mr.

Proof. First we prove uniqueness modulo M (the last sentence). Suppose

that x′ and x′′ are two solutions. Let x = x′ − x′′. Then x must be

congruent to 0 modulo each mi, and hence modulo M (by Property 5 of

congruences).

We next show how to construct a solution x.

Define Mi = M/mi to be the product of all the moduli except for the

i − th. Clearly g.c.d.(mi,Mi) = 1, and so there is an integer Ni (which

can be found by means of the Euclidean algorithm) such that MiNi ≡ 1

mod mi. Now set x = ∑
i aiMiNi. Then for each i we see that the terms in

the sum other than the i− th term are all divisible by mi, because mi|Mj

whenever j 6= i. Thus, for each i we have: x ≡ aiMiNi ≡ ai mod mi , as

desired.

41

Corollary 2.1.12. The Euler phi-function is ”multiplicative”, meaning

that ϕ(mn) = ϕ(m)ϕ(n) whenever g.c.d.(m,n) = 1.

Proof. We must count the number of integers between 0 andmn−1 which

have no common factor with mn. For each j in that range, let j1 be its

least nonnegative residue modulo m (i.e., 0≤ j1 < m and j ≡ j1 mod m)

and let j2 be its least nonnegative residue modulo n (i.e., 0 ≤ j2 < n and

j ≡ j2 mod n). It follows from the Chinese Remainder Theorem that for

each pair j1,j2 there is one and only one j between 0 and mn−1 for which

j ≡ j1 mod m, j ≡ j2 mod n. Notice that j has no common factor with

mn if and only if it has no common factor with m– which is equivalent to

j1 having no common factor with m–and it has no common factor with

n– which is equivalent to j2 having no common factor with n. Thus, the

j′s which we must count are in 1-to-1 correspondence with the pairs j1,j2

for which 0≤ j1 < m, g.c.d.(j1,m) = 1; 0≤ j2 < n, g.c.d.(j2, n) = 1. The

number of possible j′1s is ϕ(m) , and the number of possible j′2s is ϕ(n).

So the number of pairs is ϕ(m)ϕ(n). This proves the corollary.

Remark 2.1.13. Since every positive integer n can be written as a

product of prime powers, each of which has no common factors with

the others , and since we know the formula ϕ(pα) = pα(1 − 1
p), we

can use the corollary to conclude that for n = pα1
1 p

α2
2 · · · pαrr : ϕ(n) =

pα1
1 (1− 1

p1
)pα2

2 (1− 1
p2

) · · · pαrr (1− 1
pr

) = n
∏
p|n(1− 1

p).

Proposition 2.1.14. Suppose that n is known to be the product of two

distinct primes. Then knowledge of the two primes p, q is equivalent to

knowledge of ϕ(n). More precisely, one can compute ϕ(n) from p,q in

42

O(logn) bit operations, and one can compute p and q from n and ϕ(n) in

O(log3n) bit operations.

Proof. The proposition is trivial if n is even, because in that case we

immediately know p = 2, q = n/2, and ϕ(n) = n/2 − 1; so we suppose

that n is odd. By the multiplicativity of ϕ, for n = pq we have ϕ(n) =

(p − 1)(q − 1) = n + 1 − (p + q). Thus ϕ(n) can be found from p and q

using one addition and one subtraction.

Conversely, suppose that we know n and ϕ(n), but not p or q. We regard

p, q as unknowns. We know their product n and also their sum, since

p+ q = n+ 1−ϕ(n). Call the latter expression 2b (notice that it is even).

But two numbers whose sum is 2b and whose product is n must be the

roots of the quadratic equation x2 − 2bx + n = 0. Thus, p and q equal

b±
√
b2 − n. This can be done in O(log3n) bit operations. This completes

the proof.

Proposition 2.1.15. (Euler’s generalization of Fermat’s

Little Theorem) If g.c.d.(a,m) = 1, then aϕ(m) ≡ 1 mod m.

Proof. We first prove the proposition in the case when m is a prime

power: m = pα. We use induction on α. The case α = 1 is precisely

Fermat’s Little Theorem. Suppose that α ≥ 2, and the formula holds for

the (α−1)-st power of p. Then apα−1−pα−2 = 1+pα−1b for some integer b, by

the induction assumption. Raising both sides of this equation to the p-th

power and using the fact that the binomial coefficients in (1+x)p are each

divisible by p (except in the 1 and xp at the ends), we see that apα−pα−1

43

is equal to 1 plus a sum each term divisible by pα. That is, aϕ(pα) − 1 is

divisible by pα, as desired. This proves the proposition for prime powers.

Finally, by the multiplicativity of ϕ, it is clear that aϕ(m) ≡ 1 mod pα

(simply raise both sides of aϕ(pα) ≡ 1 mod pα to the appropriate power).

Since this is true for each pα||m , and since the different prime powers

have no common factors with one another, it follows by Property 5 of

congruences that aϕ(m) ≡ 1 mod m.

Corollary 2.1.16. If g.c.d.(a,m) = 1 and if n′ is the least nonnegative

residue of n modulo ϕ(m), then an ≡ an
′ mod m.

Remark 2.1.17. As the proof of Proposition 2.1.15 makes clear, there’s

a smaller power of a which is guaranteed to give 1 mod m: the least

common multiple of the powers that give 1 mod pα for each pα||m. For

example, a12 ≡ 1 mod 105 for a prime to 105, because 12 is a multiple

of 3-1,5-1 and 7-1. Note that ϕ(105) = 48.

Example 2.1.18. Compute 21000000 mod 77. Solution. Because 30 is

the least common multiple of ϕ(7) = 6 and ϕ(11) = 10, by the above

Remark we have 230 ≡ 1 mod 77. Since 1000000 = 30.33333 + 10 , it

follows that 21000000 ≡ 210 ≡ 23 mod 77. A second method of solution

would be first to compute 21000000 mod 7 (since 1000000 = 6.166666 +

4, this is 24 ≡ 2) and also 21000000 mod 11 (since 1000000 is divisible by

11-1, this is 1), and then use the Chinese Remainder Theorem to find an

x between 0 and 76 which is ≡ 2 mod 7 and ≡ 1 mod 11.

44

Modular exponentiation by the repeated squaring method. A

basic computation one often encounters in modular arithmetic is finding

bn mod m (i.e., finding the least nonnegative residue) when both m and

n are very large. There is a clever way of doing this that is much quicker

than repeated multiplication of b by itself. In what follows we shall as-

sume that b < m, and that whenever we perform a multiplication we then

immediately reduce mod m (i.e., replace the product by its least non-

negative residue). In that way we never encounter any integers greater

than m2.

We now describe the algorithm. Use a to denote the partial product.

When we’re done, we’ll have a equal to the least nonnegative residue of

bn mod m. We start out with a = 1. Let n0, n1, · · · , nk−1 denote the

binary digits of n, i.e., n = n0 + 2n1 + 4n2 + · · · + 2k−1nk−1. Each nj is

0 or 1. If n0 = 1, change a to b (otherwise keep a = 1). Then square

b, and set b1 = b2 mod m (i.e., b1 is the least nonnegative residue of b2

mod m). If n1 = 1, multiply a by b1 (and reduce mod m); otherwise

keep a unchanged. Next square b1, and set b2 = b2
1 mod m. If n2 =

1, multiply a by b2; otherwise keep a unchanged. Continue in this way.

You see that in the j-th step you have computed bj ≡ b2j mod m. If nj

= 1, i.e., if 2j occurs in the binary expansion of n, then you include bj

in the product for a (if 2j is absent from n, then you do not). It is easy

to see that after the (k−1)-st step you’ll have the desired a ≡ bn mod m.

45

Proposition 2.1.19. Time(bn mod m) = O((logn)(log2m)).

Remark 2.1.20. If n is very large in Proposition 2.1.19, you might want

to use the Corollary of Proposition 2.1.15, replacing n by its least non-

negative residue modulo ϕ(m). But this requires that you know ϕ(m).

If you do know ϕ(m), and if g.c.d.(b,m) = 1, so that you can replace n

by its least nonnegative residue modulo ϕ(m), then the estimate on the

right in Proposition 2.1.19 can be replaced by O(log3m).

Proposition 2.1.21. ∑d|n ϕ(d) = n.

Proof. Let f(n) denote the left side of equality in the proposition, i.e.,

f(n) is the sum of ϕ(d) taken over all divisors d of n (including 1 and n).

We must show that f(n) = n. We first claim that f(n) is multiplicative,

i.e., that f(mn) = f(m)f(n) whenever g.c.d.(m,n) = 1. To see this, we

note that any divisor d|mn can be written (in one and only one way) in

the form d1 · d2 where d1|m, d2|n. Since g.c.d.(d1, d2) = 1, we have ϕ(d)

= ϕ(d1)ϕ(d2), because of the multiplicativity of ϕ. We get all possible

divisors d of mn by taking all possible pairs d1, d2 where d1 is a divisor

of m and d2 is a divisor of n. Thus, f(mn) = ∑
d1|m

∑
d2|n ϕ(d1)ϕ(d2) =∑

d1|m ϕ(d1)
∑

d2|n ϕ(d2)
 = f(m)f(n), as claimed. Now to prove the

proposition suppose that n = pα1
1 · · · pαrr is the prime factorization of n.

By multiplicativity of f , we find that f(n) is a product of terms of the

form f(pα). So it suffices to prove the proposition for pα, i.e., to prove

that f(pα) = pα. But the divisors of pα are pj for 0 ≤ j ≤ α, and so f(pα)

= ∑α
j=0 ϕ(pj) = 1 + ∑α

j=1(pj−pj−1) = pα. This proves the proposition for

46

pα, and hence for all n.

Let Us Sum Up

• a ≡ b mod m, if the difference a− b is divisible by m.

• Congruence modulo m is an equivalence relation.

• The elements of Z/mZ which have multiplicative inverses are those

which are relatively prime to m.

• a−n mod m means the inverse of a modulo m.

• Any integer ap ≡ a mod p, and any integer a not divisible by p

satisfies ap−1 ≡ mod p, where p is a prime.

• ϕ(mn) = ϕ(m)ϕ(n) whenever g.c.d.(m,n) = 1.

• If g.c.d.(a,m) = 1, then aϕ(m) ≡ 1 mod m.

• ∑d|n ϕ(d) = n.

Check your progress 2.1

1. Describe all of the solutions of the following congruences:

(a) 3x ≡ 4 mod 7; (d) 27x ≡ 25 mod 256;

(b) 3x ≡ 4 mod 12; (e) 27x ≡ 72 mod 900;

(c) 9x ≡ 12 mod 21; (f) 103x ≡ 612 mod 676.

2. Find a 3-digit (decimal) number which leaves a remainder of 4 when

divided by 7, 9, or 11.

47

3. Find the smallest positive integer which leaves a remainder of 1 when

divided by 11, a remainder of 2 when divided by 12, and a remainder

of 3 when divided by 13.

4. Use the repeated squaring method to find 3875 mod 103.

5. Find ϕ(n) for all m from 90 to 100.

2.2 Some applications to factoring

Proposition 2.2.1. For any integer b and any positive integer n, bn − 1

is divisible by b− 1 with quotient bn−1 + bn−2 + · · ·+ b2 + b+ 1.

Proof. We have a polynomial identity coming from the following fact: 1

is a root of xn−1, and so the linear term x−1 must divide xn−1. Namely,

polynomial division gives xn− 1 = (x− 1)(xn−1 +xn−2 + · · ·+x2 +x+ 1).

(Alternatively, we can derive this by multiplying x by xn−1 +xn−2 + · · ·+

x2 + x + 1, then subtracting xn−1 + xn−2 + · · · + x2 + x + 1, and finally

obtaining xn − 1 after all the canceling.) Now we get the proposition by

replacing x by b.

A second proof is to use arithmetic in the base b. Written to the base

b, the number bn − 1 consists of n digits b − 1 (for example, 106 − 1 =

999999). On the other hand, bn−1 + bn−2 + · · · + b2 + b + 1 consists of

n digits all 1. Multiplying 111· · · 111 by the 1-digit number b − 1 gives

(b− 1)(b− 1)(b− 1) · · · (b− 1)(b− 1)(b− 1)b = bn − 1.

Corollary 2.2.2. For any integer b and any positive integers m and n,

48

we have, bmn − 1 = (bm − 1)(bm(n−1) + bm(n−2) + · · ·+ b2m + bm + 1).

Proof. Simply replace b by bm in the last proposition.

Example 2.2.3. Using the above corollary, we see that 235−1 is divisible

by 25 − 1 = 31 and by 27 − 1 = 127. Namely, we set b = 2 and either m

= 5, n = 7 or else m = 7, n = 5.

Proposition 2.2.4. Suppose that b is prime to m, and a and c are positive

integers. If ba ≡ 1 mod m and bc ≡ 1 mod m, and if d = g.c.d.(a, c),

then bd ≡ 1 mod m.

Proof. Using the Euclidean algorithm, we can write d in the form ua+vc,

where u and v are integers. It is easy to see that one of the two numbers

u, v is positive and the other is negative or zero. Without loss of generality,

we may suppose that u > 0, v ≤ 0. Now raise both sides of the congruence

ba ≡ 1 mod m to the u-th power, and raise both sides of the congruence

bc ≡ 1 mod m to the (−v)-th power. Now divide the resulting two

congruences, obtaining: bau−c(−v) ≡ 1 mod m. But au + cv = d, so

the proposition is proved.

Proposition 2.2.5. If p is a prime dividing bn−1, then either (i) p|bd−1

for some proper divisor d of n, or else (ii) p ≡ 1 mod n. If p > 2 and n

is odd, then in case (ii) one has p ≡ 1 mod 2n.

Proof. We have bn ≡ 1 mod p and also, by Fermat’s Little Theorem, we

have bp−1 ≡ 1 mod p. By the above proposition, this means that bd ≡ 1

mod p, where d = g.c.d.(n, p − 1). First, if d < n, then this says that

49

p|bd−1 for a proper divisor d of n, i.e., case (i) holds. On the other hand,

if d = n, then, since d|p − 1, we have p ≡ 1 mod n. Finally, if p and n

are both odd and n|p− 1 (i.e., we’re in case (ii)), then obviously 2n|p− 1.

Example 2.2.6. Factor 211 − 1 = 2047.

Solution. If p|211 − 1, by the theorem we must have p ≡ 1 mod 22.

Thus, we test p = 23,67,89,· · · (actually, we need go no farther that
√

2047 = 45.· · ·). We immediately obtain the prime factorization of 2047:

2047 = 23·89. In a very similar way, one can quickly show that 213− 1 =

8191 is prime. A prime of the form 2n − 1 is called a ”Mersenne prime”.

Example 2.2.7. Factor 312 − 1 = 531440.

Solution. By the proposition above, we first try the factors of the much

smaller numbers 31 − 1, 32 − 1, 33 − 1, 34 − 1, and the factors of 36 − 1

= (33 − 1)(33 + 1) which do not already occur in 33 − 1. This gives us

24 · 5 · 7 · 13. Since 531440/(24 · 5 · 7 · 13) = 73, which is prime, we are

done. Note that, as expected, any prime that did not occur in 3d − 1 for

d a proper divisor of 12–namely, 73 must be ≡ 1 mod 12.

Example 2.2.8. Factor 235 − 1 = 34359738367.

Solution. First we consider the factors of 2d − 1 for d = 1, 5, 7. This

gives the prime factors 31 and 127. Now (235 − 1)/(31 · 127) = 8727391.

According to the proposition, any remaining prime factor must be ≡ 1

mod 70. So we check 71, 211, 281,· · · , looking for divisors of 8727391. At

first, we might be afraid that we’ll have to check all such prime less that
√

8727391 = 2954.· · · . However, we immediately find that 8727391 = 71·

50

122921, and then it remains to check only up to
√

122921 = 350.· · · . We

find that 122921 is prime. Thus, 235−1 = 31· 71· 127· 122921 is the prime

factorization.

Remark 2.2.9. In Example 2.2.8, how can one do the arithmetic on a

calculator that only shows, say, 8 decimal places? Simply break up the

numbers into sections. For example, when we compute 235, we reach the

limit of our calculator display with 226 = 67108864. To multiply this by

29 = 512, we write 235 = 512· (67108· 1000 + 864) = 34359296· 1000 +

442368 = 34359738368. Later, when we divide 235− 1 by 31· 127 = 3937,

we first divide 3937 into 34359738, taking the integer part of the quotient:34359738
3937

 = 8727. Next, we write 34359738 = 3937· 8727 + 1539. Then

34359738367
3937 = (3937·8727+1539)·1000+367

3937

= 8727000 + 1539367
3937

= 8727391.

Remark 2.2.10. A prime number of the form 2n−1 is called a ”Mersenne

Prime” and a prime number of the form 2n+1 is called a ”Fermat Prime”.

The first few Mersenne primes are 3,7,31,121 and the first few Fermat

primes are 3,5,17,257.

Let Us Sum Up

• For any integer b and any positive integer n, bn − 1 is divisible by

b− 1 with quotient bn−1 + bn−2 + · · ·+ b2 + b+ 1.

51

• For any integer b and any positive integers m and n, we have, bmn−1

= (bm − 1)(bm(n−1) + bm(n−2) + · · ·+ b2m + bm + 1).

• If ba ≡ 1 mod m, bc ≡ 1 mod m, d = g.c.d.(a, c) where b is prime

to m and a, c are positive integers, then bd ≡ 1 mod m.

• If p is a prime dividing bn − 1, then either p|bd − 1 for some proper

divisor d of n or p ≡ 1 mod n. If p > 2 and n is odd, then p ≡ 1

mod 2n.

• A prime number of the form 2n − 1 is a Mersenne Prime.

• A prime number of the form 2n + 1 is a Fermat Prime.

Check your progress 2.2

1. Factor 315 − 1 and 324 − 1.

2. Factor 512 − 1.

3. Factor 105 − 1, 106 − 1 and 108 − 1.

4. Factor 233 − 1 and 221 − 1.

5. Factor 215 − 1, 230 − 1, and 260 − 1.

Unit Summary

In this unit we have discussed the basic properties of congruences, Fer-

mat’s Little Theorem, Chinese Remainder Theorem and Euler’s gener-

alization of Fermat’s Little Theorem. Also, we studied the method of

52

solving problems of congruences using repeating square method and some

applications of congruences to factoring.

Glossary

Equivalence relation - A relation that is reflexive, symmetric and

transitive.

Equivalence class - A set of elements equivalent to each other.

Residue class - A set of equivalence classes.

Commutative ring - A ring where multiplication operation is

commutative.

Mersenne prime - Prime number of the form 2n − 1.

Fermat prime - Prime number of the form 2n + 1.

Exercise 2.

1. What are the possibilities for the last hexadecimal digit of a perfect

square? (see 2nd Problem of Exercise 1).

2. Prove that n5 − n is always divisible by 30.

3. Find the smallest nonnegative solution of each of the following system

of congruences:

(a)x ≡ 2 mod 3 (b) x ≡ 12 mod 31 (c)19x ≡ 103 mod 900

x ≡ 3 mod 5 x ≡ 87 mod 127 10x ≡ 511 mod 841

x ≡ 4 mod 11 x ≡ 91 mod 255

x ≡ 5 mod 16

53

4. Suppose that a 3-digit (decimal) positive integer which leaves a re-

mainder of 7 when divided by 9 or 10 and 3 when divided by 11 goes

evenly into a six-digit natural number which leaves a remainder of 8

when divided by 9, 7 when divided by 10, and 1 when divided by 11.

Find the quotient.

5. Make a list showing all n for which ϕ(n) ≤ 12, and prove that your

list is complete.

6. Suppose that n is not a perfect square, and that n − 1 > ϕ(n) >

n− n2/3. Prove that n is a product of two distinct primes.

7. Suppose that b is prime to m , where m > 2, and a and c are positive

integers. Prove that, if ba ≡ −1 mod m and bc ≡ ±1 mod m, and

if d = g.c.d.(a, c), then bd ≡ −1 mod m, and a/d is odd.

8. Let m = 224 + 1 = 16777217.

(a) Find a Fermat prime which divides m.

(b) Find the complete prime factorization of m.

9. Prove that if d = g.c.d.(m,n) and a > 1 is an integer, then g.c.d.(am−

1, an − 1) = ad− 1.

Answers.

Check your progress 2.1

1. (a) x = 6 + 7n, n any integer; (b) no solution; (c) same as (a); (d)

219 + 256n; (e) 36 + 100n; (f) 636 + 676n.

54

2. Of course, 4 has the desired property, but it is not a 3-digit num-

ber. By the last part of the Chinese Remainder Theorem, any other

number which leaves the right remainders must differ from 4 by a

multiple of 7 · 9 · 11 = 693. The only 3-digit possibility is 4 + 693

= 697.

3. One can apply the Chinese Remainder Theorem to the congruences

x ≡ 1 mod 11, x ≡ 2 mod 12, x ≡ 3 mod 13. Alternately, one can

observe that obviously −10 leaves the right remainders, and then get

−10 + 11 · 12 · 13 = 1706.

4. 381+2+23+26 = 38 · 2 · 16 · 63 = 79 mod 103.

5. n 90 91 92 93 94 95 96 97 98 99 100

ϕ(n) 24 72 44 60 46 72 32 96 42 60 40

Check your progress 2.2

1. 2 · 112 · 13 · 4561, 25 · 5 · 7 · 13 · 41 · 73 · 6481.

2. 24 · 32 · 7 · 13 · 31 · 601.

3. 32 · 41 · 271, 33 · 7· 11· 13· 37, 32 · 11 · 73· 101 · 137.

4. 7· 23 · 89· 599479; 72 · 127· 337 (this example shows that a prime

p|bd − 1 in Proposition 2.2.5 may divide bn − 1 to a greater power

than it divides bd − 1).

55

5. 7· 31· 151, 32· 7· 11· 31· 151· 331, 32· 52· 7· 11· 13· 31· 41· 61· 151·

331 · 1321.

Exercise 2.

1. 0, 1, 4, 9.

2. Prove separately that it is divisible by 2, 3 and 5.

3. (a) 1973; (b) 63841; (c) 58837.

4. The quotient leaves remainders of 5, 1, 4 when divided by 9, 10, 11,

and so (by the Chinese Remainder Theorem) is of the form 851 +

990m. Similarly, the divisor is of the form 817 + 990n. Since the

divisor has 3 digits, n = 0. Since the product has 6 digits, also m =

0. Thus, the answer is 851.

5. There is no n for which ϕ(n) is an odd number greater than 1; ϕ(n)

= 1 for n = 1, 2; ϕ(n) = 2 for n = 3, 4, 6; ϕ(n) = 4 for n = 5, 8, 10,

12; ϕ(n) = 6 for n = 7, 9, 14, 18; ϕ(n) = 8 for n = 15, 16, 20, 24,

30; ϕ(n) = 10 for n = 11, 22; ϕ(n) = 12 for n = 13, 21, 26, 28, 36,

42. To prove, for example, that these are all of the n for which ϕ(n)

= 12, compare the possible factorizations of 12 (with 1 allowed as a

factor but not 3) with the formula ϕ(∏ pα) = ∏(pα− pα−1). One has

1· 2 · 6, 1 · 12, 2 · 6, and 12. The first gives 2 · 3 · 7, the second gives

2 · 13, the third gives (3 or 4) · 7 and 4 · 9, and the fourth gives 13.

6. n cannot be a prime, since if it were ϕ(n) = n−1. By assumption, n

is not the square of a prime. If it were not a product of two distinct

56

primes, then it would be a product of three or more primes (not

necessarily distinct). Let p be the smallest. Then p ≤ n1/3, and we

have ϕ(n) ≤ n(1− 1
p) ≤ n(1− n−1/3) = n− n2/3, a contradiction.

7. Use the same argument as in the proof of the last proposition to

conclude that bd ≡ ±1 mod m. But since (bd)a/d ≡ −1 mod m, it

follows that bd ≡ −1 mod m and a/d is odd.

8. (a) 28 + 1 = 257; (b) m = 97· 257· 673.

9. Apply side by side the Euclidean algorithm to find g.c.d.(am−1, an−

1) and to find g.c.d.(m,n). Notice that at each stage the remainder

in the first Euclidean algorithm is ar−1, where r is the remainder in

the second Euclidean algorithm. For example, in the first step one

divides am−1 by an−1 to get ar−1, where r is the remainder when

m is divided by n.

References:

1. Neal Koblit, A course in Number Theory and Cryptography, Springer

- Verlag, New York, 2nd edition, 2002.

Suggested Reading:

1. I. Niven and H. S. Zuckermann, An Introduction to Theory of Num-

bers (Edition 3), Wiley Eastern Ltd, New Delhi 1976

2. D. M. Burton, Elementary Number Theory, Brown Publishers, Iowa,

1989

57

3. K. Ireland and M. Rosen, A classic Introduction to Modern Number

Theory, Springer - Verlag, 1972

4. N. Koblit, Algebraic Aspects of Cryptography, Springer-Verlag, 1998.

58

123

59

UNIT - 3

60

Unit 3

Finite Fields and Quadratic Residues

Objectives.

By studying this unit, the students will

1. recall the basic definitions and properties of a field.

2. know about finite fields.

3. understand the existence of multiplicative generators of finite field.

4. know to find the quadratic residues and reciprocity.

5. know how to find the square root of a residue.

6. understand the Legendre symbol and its properties.

3.1 Basic definitions and Properties of a field.

Definition 3.1.1. A field is a set F with a multiplication and addition

operation which satisfy the familiar rules– associativity and commutativ-

ity of both addition and multiplication, the distributive law, existence of

61

an additive identity 0 and a multiplicative identity 1, additive inverses,

and multiplicative inverses for everything except 0.

Example 3.1.2. The following are the examples of field:

(1) the field Q consisting of all rational numbers;

(2) the field R of real numbers;

(3) the field C of complex numbers;

(4) the field Z/pZ of integers modulo a prime number p.

Definition 3.1.3. A vector space can be defined over any field F by

the same properties that are used to define a vector space over the real

numbers. Any vector space has a basis, and the number of elements in

a basis is called its dimension. An extension field, i.e., a bigger field

containing F, is automatically a vector space over F. We call it a finite

extension if it is a finite dimensional vector space. By the degree of a

finite extension we mean its dimension as a vector space. One common

way of obtaining extension fields is to adjoin an element to F: we say that

K = F(α) if K is the field consisting of all rational expressions formed

using α and elements of F.

Definition 3.1.4. The polynomial ring can be defined over any field

F. It is denoted F[X]; it consists of all finite sums of powers of X with

coefficients in F. One adds and multiplies polynomials in F[X] in the

same way as one does with polynomials over the reals. The degree d

of a polynomial is the largest power of X which occurs with nonzero

62

coefficient; in a monic polynomial the coefficient of Xd is 1. We say that

g divides f , where f, g ∈ F[X], if there exists a polynomial h ∈ F[X]

such that f = gh. The irreducible polynomials f ∈ F[X] are those that

are not divisible by any polynomials of lower degree except for constants;

they play the role among the polynomials that the primes play among the

integers. The polynomial ring has unique factorization, meaning that

every monic polynomial can be written in one and only one way (except

for the order of factors) as a product of monic irreducible polynomials.(A

non-monic polynomial can be uniquely written as a constant times such

a product.)

Definition 3.1.5. An element α in some extension field K containing F

is said to be algebraic over F if it satisfies a polynomial with coefficients

in F. In that case there is a unique monic irreducible polynomial in

F[X] of which α is a root (and any other polynomial which α satisfies

must be divisible by this monic irreducible polynomial). If this monic

irreducible polynomial has degree d, then any element of F(α) (i.e., any

rational expression involving powers of α and elements in F) can actually

be expressed as a linear combination of the powers 1, α, α2,· · · ,α(d−1) .

Thus, those powers of α form a basis of F(α) over F, and so the degree

of the extension obtained by adjoining α is the same as the degree of

the monic irreducible polynomial of α. Any other root α′ of the same

irreducible polynomial is called a conjugate of α over F. The fields F(α)

and F(α′) are isomorphic by means of the map that takes any expression

in terms of α to the same expression with α replaced by α′. The word

63

”isomorphic” means that we have a 1-to-1 correspondence that preserves

addition and multiplication. In some cases the fields F(α) and F(α′)

are the same, in which case we obtain an automorphism of the field.

For example,
√

2 has one conjugate, namely −
√

2, over Q, and the map

a+b
√

2 7→ a−b
√

2 is an automorphism of the field Q(
√

2) (which consists

of all real numbers of the form a + b
√

2 with a and b rational). If all of

the conjugates of α are in the field F(α), then F(α) is called a Galois

extension of F.

Definition 3.1.6. The derivative of a polynomial is defined using the

nXn−1 rule (not as a limit, since limits don’t make sense in F unless there

is a concept of distance or a topology in F). A polynomial f of degree

d may or may not have a root r ∈ F, i.e., a value which gives 0 when

substituted in place of X in the polynomial. If it does, then the degree-1

polynomial X − r divides f ; if (X − r)m is the highest power of X − r

which divides f , then we say that r is a root of multiplicity m. Because

of unique factorization, the total number of roots of f in F, counting

multiplicity, cannot exceed d. If a polynomial f ∈ F[X] has a multiple

root r, then r will be a root of the greatest common divisor of f and its

derivative f ′.

Definition 3.1.7. Given any polynomial f(X) ∈ F[X], there is an ex-

tension field K of F such that f(X) splits into a product of linear factors

(equivalently, has d roots in K, counting multiplicity, where d is its de-

gree) and such that K is the smallest extension field containing those

roots. K is called the splitting field of f . The splitting field is unique

64

up to isomorphism, meaning that if we have any other field K′ with

the same properties, then there must be a 1-to-1 correspondence K ∼−→ K′

which preserves addition and multiplication. For example, Q(
√

2) is the

splitting field of f(X) = X2− 2, and to obtain the splitting field of f(X)

= X3 − 2 one must adjoin to Q both 3
√

2 and
√
−3.

Definition 3.1.8. If adding the multiplicative identity 1 to itself in F

never gives 0, then we say that F has characteristic zero; in that case

F contains a copy of the field of rational numbers. Otherwise, there is a

prime number p such that 1 + 1 +· · · + 1 (p times) equals 0, and p is

called the characteristic of the field F. In that case F contains a copy of

the field Z/pZ (see Corollary 1 of Proposition 2.1.2), which is called its

prime field.

Let Us Sum Up

• A vector space has a basis, and the number of elements in the basis

is called its dimension.

• The polynomial ring F[X] consists of all finite sums of powers of X

with coefficients in F.

• The polynomial ring has unique factorization.

• An element α in some extension field K containing F is said to be

algebraic over F if it satisfies a polynomial with coefficients in F.

• The derivative of a polynomial is defined using the nXn−1 rule (not

65

as a limit, since limits don’t make sense in F unless there is a concept

of distance or a topology in F).

• If (X − r)m is the highest power of X − r which divides f , then we

say that r is a root of multiplicity m.

• The splitting field is unique up to isomorphism.

Check you progress 3.1

1. Give any two irreducible polynomials of degree two over a field Z3.

2. Find the splitting field of x4 + 1 over the field of rational numbers Q.

3. Is π + 2 algebraic over Q?

3.2 Finite Fields

Let Fq denote a field which has a finite number q of elements in it.

Clearly a finite field cannot have characteristic zero; so let p be the char-

acteristic of Fq . Then Fq contains the prime field Fp = Z/pZ , and

so is a vector space – necessarily finite dimensional – over Fp . Let f

denote its dimension as an Fp– vector space. Since choosing a basis en-

ables us to set up a 1-to-1 correspondence between the elements of this

f -dimensional vector space and the set of all f -tuples of elements in Fp ,

it follows that there must be pf elements in Fq . That is, q is a power of

the characteristic p.

We shall soon see that for every prime power q = pf there is a field of

q elements, and it is unique (up to isomorphism).

66

But first we investigate the multiplicative order of elements in F∗q ,

the set of nonzero elements of our finite field. By the ”order” of a nonzero

element we mean the least positive power which is 1.

Existence of multiplicative generators of finite field.

There are q − 1 nonzero elements, and, by the definition of a field, they

form an abelian group with respect to multiplication. This means that

the product of two nonzero elements is nonzero, the associative law and

commutative law hold, there is an identity element 1, and any nonzero

elements has an inverse. It is a general fact about finite groups that the

order of any element must divide the number of elements in the group.

For the sake of completeness, we give a proof of this in the case of our

group F∗q .

Proposition 3.2.1. The order of any a ∈ F∗q divides q − 1.

First proof. Let d be the smallest power of a which equals 1. (Note

that there is a finite power of a that is 1, since the powers of a in the

finite set F∗q , cannot all be distinct, and as soon as ai = aj for j > i we

have aj−i = 1.) Let S = {1, a, a2, · · · , ad−1} denote the set of all powers of

a, and for any b ∈ F∗q let bS denote the ”coset” consisting of all elements

of the form baj (for example, 1S = S). It is easy to see that any two

cosets are either identical or distinct (namely: if some b1a
i in b1S is also

in b2S, i.e., if it is of the form b2a
j, then any element b1a

i′ in b1S is of the

form to be in b2S, because b1a
i′ = b1a

iai
′−i = b2a

j+i′−i). And each coset

67

contains exactly d elements. Since the union of all the cosets exhausts F∗q,

this means that F∗q; is a disjoint union of d-element sets; hence d|(q − 1).

Second proof. First we show that aq−1 = 1. To see this, write the

product of all nonzero elements in Fq. There are q − 1 of them. If we

multiply each of them by a, we get a rearrangement of the same elements

(since any two distinct elements remain distinct after multiplication by a).

Thus, the product is not affected. But we have multiplied this product

by aq−1. Hence aq−1 = 1. (Compare with the proof of Proposition 2.1.8.)

Now let d be the order of a, i.e., the smallest positive power which gives

1. If d did not divide q − 1, we could find a smaller positive number r,

namely, the remainder when q − 1 = bd+ r is divided by d, such that ar

= aq−1−bd = 1. But this contradicts the minimality of d. This concludes

the proof.

Definition 3.2.2. A generator g of a finite field Fq is an element of

order q − 1; equivalently, the powers of g run through all of the elements

of F∗q.

The next proposition is one of the very basic facts about finite fields.

It says that the nonzero elements of any finite field form a cyclic group,

i.e., they are all powers of a single element.

Proposition 3.2.3. Every finite field has a generator. If g is a generator

of F∗q, then gj is also a generator if and only if g.c.d.(j, q − 1) = 1. In

68

particular, there are a total of ϕ(q − 1) different generators of F∗q.

Proof. Suppose that a ∈ F∗q has order d, i.e., ad = 1 and no lower

power of a gives 1. By Proposition 3.2.1, d divides q − 1. Since ad is the

smallest power which equals 1, it follows that the elements a, a2, · · · , ad

= 1 are distinct. We claim that the elements of order d are precisely

the ϕ(d) values aj for which g.c.d.(j, d) = 1. First, since the d distinct

powers of a all satisfy the equation xd = 1, these are all of the roots of

the equation (see Definition 3.1.6). Any element of order d must thus be

among the powers of a. However, not all powers of a have order d, since

if g.c.d.(j, d) = d′ > 1, then aj has lower order: because d/d′ and j/d′ are

integers, we can write (aj)(d/d′) = (ad)j/d′ = 1.

Conversely, we now show that aj does have order d whenever g.c.d.(j, d)

= 1. If j is prime to d, and if aj had a smaller order d′′, then ad
′′ raised

to either the j-th or the d-th power would give 1, and hence ad′′ raised to

the power g.c.d.(j, d) = 1 would give 1 (this is proved in exactly the same

way as Proposition 2.2.4). But this contradicts the fact that a is of order

d and so ad′′ 6= 1. Thus, aj has order d if and only if g.c.d.(j, d) = 1.

This means that, if there is any element a of order d, then there are

exactly ϕ(d) elements of order d. So for every d|(q−1) there are only two

possibilities: no element has order d, or exactly ϕ(d) elements have order

d.

Now every element has some order d|(q− 1). And there are either 0 or

ϕ(d) elements of order d. But, by Proposition 2.1.21, ∑d|(q−1) ϕ(d) = q−1,

69

which is the number of elements in F∗q. Thus, the only way that every

element can have some order d|(q − 1) is if there are always ϕ(d) (and

never 0) elements of order d. In particular, there are ϕ(q− 1) elements of

order q−1; and, as we saw in the previous paragraph, if g is any elements

of order q − 1, then the other elements of order q − 1 are precisely the

powers gj for which g.c.d.(j, q − 1) = 1. This completes the proof.

Corollary 3.2.4. For every prime p, there exists an integer g such that

the powers of g exhaust all nonzero residue classes modulo p.

Example 3.2.5. We can get all residues mod 19 from 1 to 18 by taking

powers of 2. Namely, the successive powers of 2 reduced mod 19 are: 2,

4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1. In many situations

when working with finite fields, such as Fp for some prime p, it is useful

to find a generator. What if a number g ∈ F∗p; is chosen at random?

What is the probability that it will be a generator? In other words,

what proportion of all of the nonzero elements consists of generators?

According to Proposition 3.2.3, the proportion is ϕ(p − 1)/(p − 1). But

by our formula for ϕ(n) following the corollary of Proposition 2.1.11, this

fraction is equal to the ∏(1 − 1
l), where the product is over all primes l

dividing p− 1. Thus, the odds of getting a generator by a random guess

depend heavily on the factorization of p− 1.

Proposition 3.2.6. There exists a sequence of primes p such that the

probability that a random g ∈ F∗p is a generator approaches zero.

Proof. Let {nj} be any sequence of positive integers which is divisible

70

by more and more of the successive primes 2, 3, 5, 7,· · · as j −→∞. For

example, we could take nj = j!. Choose pj to be any prime such that pj ≡

1 mod nj. How do we know that such a prime exists? That follows from

Dirichlet’s theorem on primes in an arithmetic progression, which

states: If n and k are relatively prime, then there are infinitely

many primes which are ≡ k mod n. (In fact, more is true: the primes

are ”evenly distributed” among the different possible k mod n, i.e., the

proportion of primes ≡ k mod n is l/ϕ(n); but we don’t need that fact

here.) Then the primes dividing pj − 1 include all of the primes dividing

nj, and so ϕ(pj−1)
pj−1 ≤ ∏

primes l|nj(1 − 1
l). But as j −→ ∞ this product

approaches ∏all primes l(1− 1
l) , which is zero. This proves the proposition.

Existence and uniqueness of finite fields with prime power

number of elements. We prove both existence and uniqueness by

showing that a finite field of q = pf elements is the splitting field of

the polynomial Xq −X. The following proposition shows that for every

prime power q there is one and (up to isomorphism) only one finite field

with q elements.

Proposition 3.2.7. If Fq, is a field of q = pf elements, then every ele-

ment satisfies the equation Xq−X = 0, and Fq is precisely the set of roots

of that equation. Conversely, for every prime power q = pf the splitting

field over Fp of the polynomial Xq −X is a field of q elements

Proof. First suppose that Fq is a finite field. Since the order of any

nonzero element divides q − 1, it follows that any nonzero element satis-

71

fies the equation Xq−1 = 1, and hence, if we multiply both sides by X,

the equation Xq = X. Of course, the element 0 also satisfies the latter

equation. Thus, all q elements of Fq, are roots of the degree-q polynomial

Xq −X. Since this polynomial cannot have more than q roots, its roots

are precisely the elements of Fq. This means that Fq is the splitting field

of the polynomial Xq−X, that is, the smallest field extension of Fp which

contains all of its roots.

Conversely, let q = pf be a prime power, and let F be the splitting

field over Fp of the polynomial Xq−X. Note that Xq−X has derivative

qXq−1− 1 = −1 (because the integer q is a multiple of p and so is zero in

the field Fp); hence, the polynomial Xq −X has no common roots with

its derivative (which has no roots at all), and therefore has no multiple

roots. Thus, F must contain at least the q distinct roots of Xq − X.

But we claim that the set of q roots is already a field. The key point is

that a sum or product of two roots is again a root. Namely, if a and b

satisfy the polynomial, we have aq = a, bq = b, and hence (ab)q = ab, i.e.,

the product is also a root. To see that the sum a + b also satisfies the

polynomial Xq − X = 0, we note a fundamental fact about any field of

characteristic p:

Lemma 3.2.8. (a+ b)p = ap + bp in any field of characteristic p.

Proof. The lemma is proved by observing that all of the intermediate

terms vanish in the binomial expansion ∑p
j=0

 p

j

 ap−jbj, because p!/(p−

j)!j! is divisible by p for 0 < j < p.

72

Repeated application of the lemma gives us: ap+bp = (a+b)p, ap2 +bp
2

= (ap + bp)p = (a+ b)p2
, · · · , aq + bq = (a+ b)q. Thus, if aq = a and bq =

b it follows that (a + b)q = a + b, and so a + b is also a root of Xq −X.

We conclude that the set of q roots is the smallest field containing the

roots of Xq −X, i.e., the splitting field of this polynomial is a field of q

elements. This completes the proof.

In the proof we showed that raising to the p-th power preserves addition

and multiplication. We derive another important consequence of this in

the next proposition.

Proposition 3.2.9. Let Fp, be the finite field of q = pf elements, and let

σ be the map that sends every element to its p-th power: σ(a) = ap. Then

σ is an automorphism of the field Fq (a 1-to-1 map of the field to itself

which preserves addition and multiplication). The elements of Fq which

are kept fixed by σ are precisely the elements of the prime field Fp. The

f -th power (and no lower power) of the map σ is the identity map.

Proof. A map that raises to a power always preserves multiplication.

The fact that σ preserves addition comes from the proof of Lemma 3.2.8.

Notice that for any j the j-th power of σ (the result of repeating σ j

times) is the map a 7→ ap
j . Thus, the elements left fixed by σj are the

roots of Xpj −X. If j = 1, these are precisely the p elements of the prime

field (this is the special case q = p of Proposition 3.2.7, namely, Fermat’s

Little Theorem). The elements left fixed by σf are the roots of Xq −X,

i.e., all of Fq. Since the f -th power of σ is the identity map, σ must be

1-to-1 (its inverse map is σf−1: a 7→ ap
f−1). No lower power of σ gives the

73

identity map, since for j < f not all of the elements of Fq could be roots

of the polynomial Xpj −X. This completes the proof.

Proposition 3.2.10. In the notation of Proposition 3.2.9, if α is any

element of Fq, then the conjugates of α over Fp (the elements of Fq which

satisfy the same monic irreducible polynomial with coefficients in Fp) are

the elements σj(α) = αp
j .

Proof. Let d be the degree of Fp(α) as an extension of Fp. That is Fp(α)

is a copy of Fpd. Then α satisfies Xpd−X but does not satisfy Xpj−X for

any j < d. Thus, one obtains d distinct elements by repeatedly applying

σ to α. It now suffices to show that each of these elements satisfies the

same monic irreducible polynomial f(X) that α does, in which case they

must be the d roots. To do this, it is enough to prove that, if α satisfies

a polynomial f(X) ∈ Fp[X], then so does αp. Let f(X) = ∑
ajX

j, where

aj ∈ Fp. Then 0 = f(α) = ∑
ajα

j. Raising both sides to the p-th power

gives 0 = ∑(ajαj)p (where we use the fact that raising a sum a+ b to the

p-th power gives ap + bp). But apj = aj, by Fermat’s Little Theorem, and

so we have: 0 = ∑
aj(αp)j = f(αp), as desired. This completes the proof.

Explicit construction. So far our discussion of finite fields has been

rather theoretical. Our only practical experience has been with the finite

fields of the form Fp = Z/pZ. We now discuss how to work with finite

extensions of Fp. At this point we should recall how in the case of the

rational numbers Q we work with an extension such as Q(
√

2). Namely,

we get this field by taking a root α of the equation X2 − 2 and looking

at expressions of the form a+ bα, which are added and multiplied in the

74

usual way, except that α2 should always be replaced by 2. (In the case

of Q(3
√

2) we work with expressions of the form a + bα + cα2, and when

we multiply we always replace α3 by 2.) We can take the same general

approach with finite fields.

Example 3.2.11. To construct F9 we take any monic quadratic polyno-

mial in F3[X] which has no roots in F3. By trying all possible choices

of coefficients and testing whether the elements 0, ±1 ∈ F3 are roots, we

find that there are three monic irreducible quadratics: X2 +1, X2±X−1.

If, for example, we take α to be a root of X2 + 1 (let’s call it i rather

than α- after all, we are simply adjoining a square root of −1), then the

elements of F9 are all combinations a+ bi, where a and b are 0, 1, or −1.

Doing arithmetic in F9 is thus a lot like doing arithmetic in the Gaussian

integers (the complex numbers whose real and imaginary parts are inte-

gers), except that our arithmetic with the coefficients a and b occurs in

the tiny field F3.

Notice that the element i that we adjoined is not a generator of F∗9,

since it has order 4 rather than q − 1 = 8. If, however, we adjoin a root

α of X2 − X − 1, we can get all nonzero elements of F9 by taking the

successive powers of α (remember that α2 must always be replaced by α

+ 1, since α satisfies X2 = X + 1): α1 = α, α2 = α + 1, α3 = −α + 1,

α4 = −1, α5 = −α, α6 = −α− 1, α7 = α− 1, α8 = 1. We sometimes say

that the polynomial X2−X−1 is primitive, meaning that any root of the

irreducible polynomial is a generator of the group of nonzero elements of

the field. There are 4 = ϕ(8) generators of F∗9, by Proposition 3.2.3: two

75

are the roots of X2 −X − 1 and two are the roots of X2 + X − 1. (The

second root of X2−X−1 is the conjugate of α, namely, σ(α) = α3 = −α

+ 1.) Of the remaining four nonzero elements, two are the roots of X2 +1

(namely ±i = ±(α+ 1)) and the other two are the two nonzero elements

±1 of F3 (which are roots of the degree-1 monic irreducible polynomials

X − 1 and X + 1.

In general, in any finite field Fq, q = pf , each element α satisfies a

unique monic irreducible polynomial over Fp, of some degree d. Then

the field Fp(α) obtained by adjoining this element to the prime field is

an extension of degree d that is contained in Fq. That is, it is a copy of

the field Fpd. Since the big field Fpf contains Fpd, and so is an Fpd-vector

space of some dimension f ′, it follows that the number of elements in Fpf

must be (pd)f ′, i.e., f = df ′. Thus, d|f . Conversely, for any d|f the finite

field Fpd is contained in Fq, because any solution of Xpd = X is also a

solution of Xpf = X. (To see this, note that for any d′, if you repeatedly

replace X by Xpd on the left in the equation Xpd = X, you can obtain

Xpdd
′
= 1.) Thus, we have proved:

Proposition 3.2.12. The subfields of Fq are theFpd for d dividing f . If

an element of Fpf is adjoined to Fp, one obtains one of these fields.

It is now easy to prove a formula that is useful in determining the

number of irreducible polynomials of a given degree.

Proposition 3.2.13. For any q = pf the polynomial Xq −X factors in

Fp[X] into the product of all monic irreducible polynomials of degrees d

76

dividing f .

Proof. If we adjoin to Fp a root α of any monic irreducible polynomial of

degree d|f , we obtain a copy of Fpd which is contained in Fpf . Since α then

satisfies Xq −X = 0, the monic irreducible must divide that polynomial.

Conversely, let f(X) be a monic irreducible polynomial which divides

Xq −X. Then f(X) must have its roots in Fp (since that’s where all of

the roots of Xq − X are). Thus f(X) must have degree dividing f , by

Proposition 3.2.12, since adjoining a root gives a subfield of Fq. Thus,

the monic irreducible polynomials which divide Xq −X are precisely all

of the ones of degree dividing f . Since we saw that Xq − X has no

multiple factors, this means that Xq − X is equal to the product of all

such irreducible polynomials, as was to be proved.

Corollary 3.2.14. If f is a prime number, then there are (pf − p)/f

distinct monic irreducible polynomials of degree f in Fp[X].

Proof. Notice that (pf − p)/f is an integer because of Fermat’s Little

Theorem for the prime f , which guarantees that pf ≡ p mod f . To prove

the corollary, let n be the number of monic irreducible polynomials of

degree f . According to the proposition, the degree-pf polynomial Xpf−X

is the product of n polynomials of degree f and the p degree-1 irreducible

polynomials X−a for a ∈ Fp. Thus, equating degrees gives: pf = nf +p,

from which the desired equality follows.

More generally, suppose that f is not necessarily prime. Then, letting

nd denote the number of monic irreducible polynomials of degree d over

Fp, we have nf = (pf −∑
dnd)/f , where the summation is over all d < f

77

which divide f .

We now extend the time estimates in unit 1 for arithmetic modulo p

to general finite fields.

Proposition 3.2.15. Let Fq, where q = pf , be a finite field, and let F (X)

be an irreducible polynomial of degree f over Fp. Then two elements of Fq

can be multiplied or divided in O(log3q) bit operations. If k is a positive

integer, then an element of Fq can be raised to the k-th power in O(log k

log3q) bit operations.

Proof. An element of Fq is a polynomial with coefficients in Fp = Z/pZ

regarded modulo F (X). To multiply two such elements, we multiply the

polynomials - this requires O(f 2) multiplications of integers modulo p

(and some additions of integers modulo p, which take much less time)

- and then divide the polynomial F (X) into the product, taking the re-

mainder polynomial as our answer. The polynomial division involves O(f)

divisions of integers modulo p and O(f 2), multiplications of integers mod-

ulo p. Since a multiplication modulo p takes O(log2p) bit operations, and

a division (using the Euclidean algorithm, for example) takes O(log3p) bit

operations (see the corollary to Proposition 1.2.4), the total number of

bit operations is: O(f 2 log2p + f 1og3p) = O((f logp)3) = O(log3q). To

prove the same result for division, it suffices to show that the reciprocal of

an element can be found in time O(log3q). Using the Euclidean algorithm

for polynomials over the field Fp , we must write 1 as a linear combination

of our given element in Fq (i.e., a given polynomial of degree < f) and the

fixed degree f polynomial F (X). This involves O(f) divisions of polyno-

78

mials of degree < f , and each polynomial division requires O(f 2 log2p +

f log3p) = O(f 2 log3p) bit operations. Thus, the total time required is

O(f 3 log3p) = O(log3q). Finally, a k-th power can be computed by the

repeated squaring method in the same way as modular exponentiation

(see the end of first section in Unit 2). This takes O(logk) multiplications

(or squarings) of elements of Fq, and hence O(logk log3q) bit operations.

This completes the proof.

We conclude this section with an example of computation with polyno-

mials over finite fields. We illustrate by an example over the very smallest

(and perhaps the most important) finite field, the 2-element field F2 =

{0, 1}. A polynomial in F2[X] is simply a sum of powers of X. In some

ways, polynomials over Fp are like integers expanded to the base p, where

the digits are analogous to the coefficients of the polynomial. For exam-

ple, in its binary expansion an integer is written as a sum of powers of 2

(with coefficients 0 or 1), just as a polynomial over F2 is a sum of powers

of X. But the comparison is often misleading. For example, the sum of

any number of polynomials of degree d is a polynomial of degree (at most)

d; whereas a sum of several d-bit integers will be an integer having more

than d binary digits.

Example 3.2.16. Let f(X) =X4+X3+X2+1, g = X3+1 ∈ F2[X]. Find

g.c.d.(f, g) using the Euclidean algorithm for polynomials, and express the

g.c.d. in the form u(X)f(X) + v(X)g(X).

79

Solution. Polynomial division gives us the sequence of equalities be-

low which lead to the conclusion that g.c.d.(f, g) = X + 1, and the next

sequence of equalities enables us, working backwards, to express X + 1

as a linear combination of f and g. (Note, by the way, that in a field of

characteristic 2 adding is the same as subtracting, i.e., a− b = a+ b− 2b

= a+ b.) We have:

f = (X + 1)g + (X2 +X)

g = (X + 1)(X2 +X) + (X + 1)

X2 +X = X(X + 1)

and then
X + 1 = g + (X + 1)(X2 +X)

= g + (X + 1)(f + (X + 1)g)

= (X + 1)f + (X2)g.

Let Us Sum Up

• A finite field cannot have characteristic zero.

• For every prime power q = pf , there is a field of q elements and it is

unique upto isomorphism.

• The order of any a ∈ F∗q divides q − 1.

• A generator g of a finite field Fq is an element of order q − 1.

• The nonzero elements of any finite field form a cyclic group.

80

• For every prime p, there exists an integer g such that the powers of

g exhaust all nonzero residue classes modulo p.

• There exists a sequence of primes p such that the probability that a

random g ∈ F∗p is a generator approaches zero.

• If n and k are relatively prime, then there are infinitely many primes

which are ≡ k mod n.

• For every prime power q there is one and only one finite field with q

elements.

• (a+ b)p = ap + bp in any field of characteristic p.

• If f is a prime number, then there are (pf − p)/f distinct monic

irreducible polynomials of degree f in Fp[X].

Check your progress 3.2

1. For p= 2, 3, 5, 7, 11, 13 and 17, find the smallest positive integer

which generates F∗p, and determine how many of the integers 1, 2, 3,

· · · , p− 1 are generators.

2. How many elements are in the smallest field extension of F5 which

contains all of the roots of the polynomials X2+X+1 and X3+X+l?

3. For each degree d ≤ 6, find the number of irreducible polynomials

over F2 of degree d, and make a list of them.

4. For each degree d ≤ 6, find the number of monic irreducible polyno-

mials over F3 of degree d, and for d ≤ 3 make a list of them.

81

5. Use the polynomial version of the Euclidean algorithm to find g.c.d.(f, g)

for f, g ∈ Fp[X] in each of the following examples. In each case ex-

press the g.c.d. polynomial as a combination of f and g, i.e., in the

form d(X) = u(X)f(X) + v(X)g(X).

(a) f = X3 +X + 1, g = X2 +X + 1, p = 2;

(b) f = X6 +X5 +X4 +X3 +X2 +X+1, g = X4 +X2 +X+1,p = 2;

(c) f = X3 −X + 1, g = X2 + 1, p = 3;

(d) f = X5 +X4 +X3 −X2 −X + 1,g = X3 +X2 +X + 1, p = 3;

(e) f =X5+88X4+73X3+83X2+51X+67, g =X3+97X2+40X+38,

p = 101.

3.3 Quadratic residues and reciprocity

Roots of unity. In many situations it is useful to have solutions of the

equation xn = 1. Suppose we are working in a finite field Fq. We now

answer the questions: How many n-th roots of unity are there in Fq?

Proposition 3.3.1. Let g be a generator of F∗q. Then gj is an n-th root

of unity if and only if nj ≡ 0 mod q − 1. The number of n-th roots of

unity is g.c.d.(n, q − 1). In particular, Fq has a primitive n-th root of

unity (i.e., an element ξ such that the powers of ξ run through n n-th

roots of unity) if and only if n|q− 1. If ξ is a primitive n-th root of unity

in Fq, then ξj is also a primitive n-th root if and only if g.c.d.(j, n) = 1.

Proof. Any element of F∗q can be written as a power gj of the generator

82

g. A power of g is 1 if and only if the power is divisible by q−1. Thus, an

element gj is an n-th root of unity if and only if nj ≡ 0 mod q−1. Next,

let d = g.c.d.(n, q− 1). According to Corollary 2 of Proposition 2.1.2, the

equation nj ≡ 0 mod q − 1 (with j the unknown) is equivalent to the

equation n
dj ≡ 0 mod q−1

d . Since n/d is prime to (q − 1)/d, the latter

congruence is equivalent to requiring j to be a multiple of (q − 1)/d. In

other words, the d distinct powers of g(q−1)/d are precisely the n-th roots

of unity. There are n such roots if and only if d = n, i.e., n|q− 1. Finally,

if n does divide q − 1, let ξ = g(q−1)/n. Then ξj equals 1 if and only

if n|j. The k-th power of ξj equals 1 if and only if kj ≡ 0 mod n. It

is easy to see that ξj has order n (i.e., this equation does not hold for

any positive k < n) if and only if j is prime to n. Thus, there are ϕ(n)

different primitive n-th roots of unity if n|q−1. This completes the proof.

Corollary 3.3.2. If g.c.d.(n, q − 1) = 1, then 1 is the only n-th root of

unity.

Proof. By the above Proposition, the number of n-th roots of unity

is g.c.d.(n, q − 1), which is 1. Thus, 1 is the only n-th root of unity.

Corollary 3.3.3. The element −1 ∈ Fq has a square root in Fq if and

only if q ≡ 1 mod 4.

A square root of −1 is the same thing as a primitive 4-th root of 1,

and our field has a primitive 4-th root if and only if 4|q − 1.

83

Remark 3.3.4. Corollary 3.2.3 says that if q ≡ 3 mod 4, we can always

get the quadratic extension Fq2 by adjoining a root of X2 + 1, i.e., by

considering ”Gaussian integer” type expressions a + bi. We did this for

q = 3 in the last section.

Let us suppose, for example, that p is a prime which is ≡ 3 mod 4.

There is a nice way to think of the field Fp2 which generalizes to other

situations. Let R denote the Gaussian integer ring. Sometimes we write

R = Z + Zi, meaning the set of all integer combinations of 1 and i. If m

is any Gaussian integer, and α = a+ bi and β = c+ di are two Gaussian

integers, we write α ≡ β mod m if α − β is divisible by m, i.e., if the

quotient is a Gaussian integer. We can then look at the set R/mR of

residue classes modulo m; just as in the case of ordinary integers, residue

classes can be added or multiplied, and the residue class of the result

does not depend on which representatives were chosen for the residue

class factors. Now if m = p+ 0i is a prime number which is ≡ 3 mod 4,

it is not hard to show that R/pR is the field Fp2.

Quadratic residues. Suppose that p is an odd prime, i.e., p > 2. We

are interested in knowing which of the nonzero elements {1, 2,· · · , p− 1}

of Fp are squares. If some a ∈ F∗p is a square, say b2 = a, then a has

precisely two square roots ±b (since the equation X2− a = 0 has at most

two solutions in a field). Thus, the squares in F∗p can all be found by

computing b2 mod p for b = 1, 2, 3, · · · , (p − 1)/2 (since the remaining

integers up to p− 1 are all ≡ −b for one of these b), and precisely half of

the elements in F∗p are squares. For example, the squares in F11 are 12

84

= 1, 22 = 4, 32 = 9, 42 = 5, and 52 = 3. The squares in Fp are called

quadratic residues modulo p. The remaining nonzero elements are called

nonresidues. For p = 11 the nonresidues are 2, 6, 7, 8, 10. There are

(p− 1)/2 residues and (p− 1)/2 nonresidues.

If g is a generator of Fp, then any element can be written in the form gj.

Thus, the square of any element is of the form gj with j even. Conversely,

any element of the form gj with j even is the square of some element,

namely ±gj/2.

Definition 3.3.5. (The Legendre symbol).

Let a be an integer and p > 2 a prime. We define the Legendre symbol(
a
p

)
to equal 0, 1 or −1, as follows:

(
a
p

)
=



0, if p|a;

1, if a is a quadratic residue mod p;

−1 if a is a nonresidue mod p.

Thus, the Legendre symbol is simply a way of identifying whether or not

an integer is a quadratic residue modulo p.

Proposition 3.3.6.
(
a
p

)
≡ a(p−1)/2 mod p

Proof. If a is divisible by p, then both sides are ≡ 0 mod p. Suppose

p - a. By Fermat’s Little Theorem, in Fp the square of a(p−1)/2 is 1, so

a(p−1)/2 itself is ± 1. Let g be a generator of F∗p, and let a = gj. As we

saw, a is a residue if and only if j is even. And a(p−1)/2 = gj(p−1)/2 is 1 if

and only if j(p − 1)/2 is divisible by p − 1, i.e., if and only if j is even.

85

Thus, both sides of the congruence in the proposition are ± 1 in Fp , and

each side is +1 if and only if j is even. This completes the proof.

Proposition 3.3.7. The Legendre symbol satisfies the following proper-

ties:

(a)
(
a
p

)
depends only on the residue of a modulo p;

(b)
(
ab
p

)
=

(
a
p

)(
b
p

)
;

(c) for b prime to p,
(
ab2

p

)
=

(
a
p

)
;

(d)
(1
p

)
= 1 and

(−1
p

)
= (−1)(p−1)/2.

Proof. Part (a) is obvious from the definition. Part (b) follows from

Proposition 3.3.6, because the right side is congruent modulo p to a(p−1)/2

·b(p−1)/2 = (ab)(p−1)/2, as is the left side. Part (c) follows immediately from

part (b). The first equality in part (d) is obvious, because 12 = 1, and

the second equality comes from Corollary 3.3.3 (or by taking a = −1 in

Proposition 3.3.6). This completes the proof.

Remark 3.3.8. Part (b) of Proposition 3.3.6 shows that one can deter-

mine if a number a is a quadratic residue modulo p, i.e., one can evaluate(
a
p

)
, if one factors a and knows the Legendre symbol for the factors. The

first step in doing this is to write a as a power of 2 times an odd number.

We then want to know how to evaluate
(2
p

)
.

86

Proposition 3.3.9.

(2
p

)
= (−1)(p2−1)/8 =


1 if p ≡ ± mod 8;

−1 if p ≡ ±3 mod 8.

Proof. Let f(n) = (−1)(n2−1)/8 for n odd, f(n) = 0 for n even. We

want to show that
(2
p

)
= f(p). Of the various ways of proving this, we

shall use an efficient method based on what we already know about finite

fields. Since p2 ≡ 1 mod 8 for any odd prime p, we know that the field

Fp2 contains a primitive 8-th root of unity. Let ξ ∈ Fp2 denote a primitive

8-th root of 1. Note that ξ4 = −1. Define G = ∑7
j=0 f(j)ξj. (G is an

example of what is called a Gauss sum.) Then G = ξ − ξ3 − ξ5 + ξ7 =

2(ξ−ξ3) (because ξ5 = ξ4ξ = −ξ and ξ7 = −ξ3), and G2 = 4(ξ2−2ξ4 +ξ6)

= 8. Thus, in Fp2 we have

Gp = (G2)(p−1)/2G = 8(p−1)/2G =
(8
p

)
G =

(2
p

)
G,

by Proposition 3.3.6 and Proposition 3.3.7(c). On the other hand, using

the definition of G, the fact that (a+ b)p = ap+ bp in Fp2, and the obvious

observation that f(j)p = f(j), we compute: Gp = ∑7
j=0 f(j)ξpj. Notice

that f(j) = f(p)f(pj), as we easily check. Then, making the change of

variables j′ = pj (i.e., modulo 8 we have j′ running through 0, · · · ,7 when

j does), we obtain:

Gp = ∑7
j=0 f(p)f(pj)ξpj = f(p)∑7

j′=0 f(j′)ξj′ = f(p)G.

Comparing the two equalities for Gp gives the desired result. (Notice that

we can divide by G, since it is not 0 in Fp2, as is clear from the fact that

87

its square is 8.)

Remark 3.3.10. Next, we must deal with the odd prime factors of a.

Let q stand for such an odd prime factor. i.e., q stand for an odd prime

distinct from p, not for a power of p as in the last section.

Since a can be assumed to be smaller than p (by part (a) of Proposition

3.3.7), the prime factors q will be smaller than p. The next proposition

- the fundamental Law of Quadratic Reciprocity - tells us how to re-

late
(
q
p

)
to

(
p
q

)
. The latter Legendre symbol will be easier to evaluate,

since we can immediately replace p by its least positive residue modulo q,

thereby reducing ourselves to a Legendre symbol involving smaller num-

bers. The quadratic reciprocity law states that
(
q
p

)
and

(
p
q

)
are the same

unless p and q are both ≡ 3 mod 4, in which case they are the negatives

of one another. This can be expressed as a formula using the fact that

(p− 1)(q− 1)/4 is even unless both primes are ≡ 3 mod 4, in which case

it is odd.

Proposition 3.3.11. (Law of Quadratic Reciprocity). Let p and q

be two odd primes. Then

(
q
p

)
= (−1)(p−1)(q−1)/4

(
p
q

)
=


−
(
p
q

)
if p ≡ q ≡ 3 mod 4;

(
p
q

)
otherwise

Proof. We shall give a particularly short proof along the lines of the proof

of the last proposition, using finite fields. Let f be any power of p such

88

that pf ≡ 1 mod q. For example, we can always take f = q−1. Then, as

we saw at the beginning of the section (Proposition 3.3.1), the field Fpf

contains a primitive q-th root of unity, which we denote ξ. (Remember

that q here denotes another prime besides p; it does not denote pf .) We

define the ”Gauss sum” G by the formula G = ∑q−1
j=0

(
j
q

)
ξj. In the next

paragraph we shall prove that G2 = (−1)(q−1)/2q. Before proving that

lemma, we show how to use it to prove our proposition. The proof is

very similar to the proof of Proposition 3.3.9. We first obtain (using the

lemma to be proved below):

Gp = (G2)(p−1)/2G =
(
(−1)(q−1)/2q

)(p−1)/2
G

= (−1)(p−1)(q−1)/4q(p−1)/2G = (−1)(p−1)(q−1)/4
q
p

G

by Proposition 3.3.6 with a replaced by q (recall that we’re working in

a field of characteristic p, namely Fpf , and so congruence modulo p

becomes equality). On the other hand, using the definition of G, the fact

that (a + b)p = ap + bp in Fpf , and the obvious observation that
(
j
q

)p =(
j
q

)
, we compute:

Gp = ∑q−1
j=0

(
j
q

)
ξpj = ∑q−1

j=0
(
p
q

)(
pj
q

)
ξpj,

by parts (b) and (c) of Proposition 3.3.7. Pulling
(
p
q

)
outside the sum-

mation and making the change of variables j′ = pj in the summation,

we finally obtain: Gp =
(
p
q

)
G. Equating our two expressions for Gp and

dividing by G (which is possible, since G2 = ±q and so is not zero in

89

Fpf), we obtain the quadratic reciprocity law. Thus, it remains to prove

the following lemma.

Lemma 3.3.12. G2 = (−1)(q−1)/2q

Proof. Using the definition of G, where in one copy of G we replace the

variable of summation j by −k (and note that the summation can start

at 1 rather than 0, since
(0
q

)
= 0), we have:

G2 =
q−1∑
j,k=1

j
q

ξj
−k
q

ξ−k =
−1
q

 q−1∑
j=1

q−1∑
k=1

jk
q

ξj−k

= (−1)(q−1)/2
q−1∑
j=1

q−1∑
k=1

j2k

q

ξj(1−k)

where we have used Part (d) of Proposition 3.3.7 to replace
(−1
q

)
by

(−1)(q−1)/2, and for each value of j we have made a change of variable

in the inner summation k ←→ kj (i.e., for each fixed j, kj runs through

the residues modulo q as k does, and the summands depend only on the

residue modulo q). We next use part (c) of Proposition 3.3.7, interchange

the order of summation, and pull the
(
k
q

)
outside the inner sum over j.

The double sum then becomes ∑k

(
k
q

)∑
j ξ

j(1−k). Here both sums go from

1 to q − 1, but if we want we can insert the terms with j = 0, since that

simply adds to the double sum ∑
k

(
k
q

)
, which is zero (because there are

equally many residues and nonresidues modulo q). Thus, the double sum

can be written ∑q−1
k=1

(
k
q

)∑q−1
j=0 ξ

j(1−k). But for each k other than 1, the

inner sum vanishes. This is because the sum of the distinct powers of a

nontrivial (6= 1) root of unity ξ′ is zero (the simplest way to see this is

to note that multiplying the sum by ξ′ just rearranges it, and so the sum

90

multiplied by ξ′ − 1 is zero). So we are left with the contribution when k

= 1, and we finally obtain:

G2 = (−1)(q−1)/2
(1
q

)∑q−1
j=0 ξ

0 = (−1)(q−1)/2q

This completes the proof of the lemma, and hence also the proof of the

Law of Quadratic Reciprocity.

Example 3.3.13. Determine whether 7411 is a residue modulo the prime

9283.

Solution. Since 7411 and 9283 are both primes which are ≡ 3 mod 4,

we have
(7411

9283
)

= −
(9283

7411
)

= −
(1872

7411
)

by part (a) of Proposition 3.3.7. Since

1872 = 24 ·32 ·13, by part (c) of Proposition 3.3.7 we find that the desired

Legendre symbol is −
(13

7411
)
. But we can now apply quadratic reciprocity

again: since 13 ≡ 1 mod 4 we find that −
(13

7411
)

= −
(7411

13
)

= −
(1

13
)

=

−1. In other words, 7411 is a quadratic nonresidue.

Remark 3.3.14. One difficulty with this method of evaluating Legendre

symbols is that at each stage we must factor the number on top in order

to apply Proposition 3.3.11. If our numbers are astronomically large, this

will be very time consuming. Fortunately, it is possible to avoid any need

for factoring (except taking out powers of 2, which is very easy), once we

prove a generalization of the quadratic reciprocity law that applies to all

positive odd integers, not necessarily prime. But we first need a definition

which generalizes the definition of the Legendre symbol.

Definition 3.3.15. (The Jacobi symbol). Let a be an integer, and let

n be any positive odd number. Let n = pα1
1 · · · pαrr be the prime factor-

91

ization of n. Then we define the Jacobi symbol
(
a
n

)
as the product of the

Legendre symbols for the prime factors of n:

a
n

 =
 a
p1

α1

· · ·
 a
pr

αr .

A word of warning is in order here. If
(
a
n

)
= 1 for n composite, it is not

necessarily true that a is a square modulo n. For example,
(2

15
)

=
(2

3
)(2

5
)

= (−1)(−1) = 1, but there is no integer x such that x2 ≡ 2 mod 15.

We now generalize Proposition 3.3.11 to the Jacobi symbol.

Proposition 3.3.16. For any positive odd n we have
(2
n

)
= (−1)(n2−1)/8.

Proof. Let f(n) denote the function on the right side of the equality,

as in the proof of Proposition 3.3.11. It is easy to see that f(n1n2) =

f(n1)f(n2) for any two odd numbers n1 and n2. (Just consider the differ-

ent possibilities for n1 and n2 modulo 8.) This means that the right side of

the equality in the proposition equals f(p1)α1 · · · f(pr)αr =
(2
p1

)α1 · · ·
(2
pr

)αr
by Proposition 3.3.11. But this is

(2
n

)
, by definition.

Proposition 3.3.17. For any two positive odd integers m and n we have(
m
n

)
= (−1)(m−1)(n−1)/4

(
n
m

)
.

Proof. First note that if m and n have a common factor, then it follows

from the definition of the Legendre and Jacobi symbols that both sides

are zero. So we can suppose that g.c.d.(m,n) = 1. Next, we write m and

n as products of primes: m = p1p2 · · · pr and n = q1q2 · · · qs. (The p’s and

q’s include repetitions if m or n has a square factor.) In converting from(
m
n

)
= ∏

i,j

(
pi
qj

)
to

(
n
m

)
= ∏

i,j

(
qj
pi

)
we must apply the quadratic reciprocity

92

law for the Legendre symbol rs times. The number of (−1)’s we get is

the number of times both pi and qj are ≡ 3 mod 4, i.e., it is the product

of the number of primes ≡ 3 mod 4 in the factorization of m and in the

factorization of n. Thus,
(
m
n

)
=

(
n
m

)
unless there are an odd number of

primes ≡ 3 mod 4 in both factorizations, in which case
(
m
n

)
= −

(
n
m

)
.

But a product of odd primes, such as m or n, is ≡ 3 mod 4 if and only if

it contains an odd number of primes which are ≡ 3 mod 4. We conclude

that
(
m
n

)
=
(
n
m

)
unless both m and n are ≡ 3 mod 4, as was to be proved.

This gives us the reciprocity law for the Jacobi symbol.

Example 3.3.18. We return to Example 3.3.13, and show how to eval-

uate the Legendre symbol without factoring 1872, except to take out the

power of 2. By the reciprocity law for the Jacobi symbol we have

−
1872

7411

 = −
 16

7411

 117
7411

 = −
7411

117

 = −
 40

117

,

and this is equal to −
(2

117
)(5

117
)

=
(5

117
)

=
(117

5
)

=
(2

5
)

= −1.

Square roots modulo p. Using quadratic reciprocity, one can quickly

determine whether or not an integer a is a quadratic residue modulo p.

However, if it is a residue, that does not tell us how to find a solution to

the congruence x2 ≡ a mod p, it tells us only that a solution exists. We

conclude this section by giving an algorithm for finding a square root of

a residue a once we know any nonresidue n.

Let p be an odd prime, and suppose that we somehow know a quadratic

nonresidue n. Let a be an integer such that
(
a
p

)
= 1. We want to find

93

an integer x such that x2 ≡ a mod p. Here is how we proceed. First

write p − 1 in the form 2α · s, where s is odd. Then compute ns modulo

p, and call that b. Next compute a(s+1)/2 modulo p, and call that r. Our

first claim is that r comes reasonably close to being a square root of a.

More precisely, if we take the ratio of r2 to a, we claim that we get a

2α−1-th root of unity modulo p. Namely, we compute (for brevity, we

shall use equality to mean congruence modulo p, and we use a−1 to mean

the inverse of a modulo p):

(a−1r2)2α−1 = as2
α−1 = a(p−1)/2 =

a
p

 = 1.

We must then modify r by a suitable 2α-th root of unity to get an x such

that x2/a is 1. To do this, we claim that b is a primitive 2α-th root of

unity, which means that all 2α-th roots of unity are powers of b. To see

this, first we note that b is a 2α-th root of 1, because b2α = n2αs = np−1

= 1. If b weren’t primitive, there would be a lower power (a divisor of

2α) of b that gives 1. But then b would be an even power of a primitive

2α-th root of unity, and so would be a square in F∗p. This is impossible,

because
(
b
p

)
=
(
n
p

)s = −1 (since s is odd and n is a nonresidue). Thus, b

is a primitive 2α-th root of unity. So it remains to find a suitable power

bj, 0 ≤ j < 2α, such that x = bjr gives the desired square root of a. To

do that, we write j in binary as j = j0 + 2j1 + 4j2 + · · · + 2α−2jα−2, and

show how one successively determines whether j0, j1, · · · is 0 or 1. (Note

that we may suppose that j < 2α−1, since b2α−1 = −1, and so j can be

modified by 2α−1 to give another j for which bjr is the other square root

94

of a.) Here is the inductive procedure for determining the binary digits

of j:

1. Raise (r2/a) to the 2α−2-th power. We proved that the square of this

is 1. Hence, you get either ±1. If you get 1, take j0 = 0; if you get

−1, take j0 = 1. Notice that j0 has been chosen so that ((bj0r)2/a)

is a 2α−2-th root of unity.

2. Suppose you’ve found j0, · · · , jk−1 such that (bj0+2j1+···+2k−1jk−1r)2/a

is a 2α−k−1 -th root of unity, and you want to find jk. Raise this

number to half the power that gives 1, and choose jk according to

whether you get +1 or −1:

if
(bj0+2j1+···+2k−1jk−1r)2

a


2α−k−2

=


1

−1
,

then take jk =


0

1
respectively.

We easily check that with this choice of jk the ”corrected” value

comes closer to being a square root of a, i.e., we find that

(bj0+2j1+···+2k−1jkr)2/a is a 2α−k−2-th root of unity.

When we get to k = α− 2 and find jα−2, we then have

(bj0+2j1+···+2α−2jα−2r)2/a = 1,

i.e., bjr is a square root of a, as desired.

95

Example 3.3.19. Use the above algorithm to find a square root of a =

186 modulo p = 401.

Solution. The first nonresidue is n = 3. We have p − 1 = 24 · 25, and

so b = 325 = 268 and r = a13 = 103 (where we use equality to denote

congruence modulo p). After first computing a−1 = 235, we note that

r2/a = 98, which must be an 8-th root of 1. We compute that 984 = −1,

and so j0 = 1. Next, we compute (br)2/a = −1. Since the 2-nd power of

this is 1, we have j1 = 0, and then j2 = 1. Thus, j = 5 and the desired

square root is b5r = 304.

Remark 3.3.20. The easiest case of this algorithm occurs when p is a

prime which is ≡ 3 mod 4. Then α = 1, s = (p − 1)/2, so (s + 1)/2 =

(p + 1)/4, and we see that x = r = a(p+1)/4 is already the desired square

root.

Remark 3.3.21. We now discuss the time estimate for this algorithm.

We suppose that we start already knowing the information that n is a

nonresidue. The steps in finding s, b and r = a(s+1)/2 (working modulo p,

of course) take at most O(log3p) bit operations (see Proposition 2.1.19).

Then in finding j the most time-consuming part of the k-th induction

step is raising a number to the 2α−k−2-th power, and this means α−k−2

squarings mod p of integers less than p. Since α − k − 2 < α. we have

the estimate O(α log2p) for each step. Thus, since there are α− 1 steps,

the final estimate is O(log3p+ α2log2p) = O(log2p(logp+ α2)). At worst

(if almost all of p− 1 is a power of 2), this is O(log4p), since α < log2p=

O(log p) Thus, given a nonresidue modulo p, we can extract square roots

96

mod p in polynomial time (bounded by the fourth power of the number

of bits in p).

Remark 3.3.22. Strictly speaking, it is not known (unless one assumes

the validity of the so-called ”Riemann Hypothesis”) whether there is an

algorithm for finding a nonresidue modulo p in polynomial time. How-

ever, given any ε > 0 there is a polynomial time algorithm that finds

a nonresidue with probability greater than 1 - ε. Namely, a randomly

chosen number n, 0 < n < p, has a 50% chance of being a nonresidue,

and this can be checked in polynomial time. If we do this for more than

log2(l/ε) different randomly chosen n, then with probability > 1 − ε at

least one of them will be a nonresidue.

Let Us Sum Up

• Fq has a primitive n-th root of unity if and only if n|q − 1. If ξ is

a primitive n-th root of unity in Fq, then ξj is also a primitive n-th

root if and only if g.c.d.(j, n) = 1.

• If g.c.d.(n, q − 1) = 1, then 1 is the only n-th root of unity.

• The element −1 ∈ Fq has a square root in Fq if and only if q ≡ 1

mod 4.

• The Legendre symbol is simply a way of identifying whether or not

an integer is a quadratic residue modulo p.

•
(
a
p

)
≡ a(p−1)/2 mod p.

97

• (a)
(
a
p

)
depends only on the residue of a modulo p;

(b)
(
ab
p

)
=
(
a
p

)(
b
p

)
;

(c) for b prime to p,
(
ab2

p

)
=
(
a
p

)
;

(d)
(1
p

)
= 1 and

(−1
p

)
= (−1)(p−1)/2.

•
(2
p

)
= (−1)(p2−1)/8 =


1 if p ≡ ± mod 8;

−1 if p ≡ ±3 mod 8.

• Let p and q be two odd primes. Then

(
q
p

)
= (−1)(p−1)(q−1)/4

(
p
q

)
=


−
(
p
q

)
if p ≡ q ≡ 3 mod 4;

(
p
q

)
otherwise

• G2 = (−1)(q−1)/2q.

• (an) = 1, for n composite.

• For any positive odd n we have
(2
n

)
= (−1)(n2−1)/8.

• For any two positive odd integers m and n we have(
m
n

)
= (−1)(m−1)(n−1)/4

(
n
m

)
.

Check your progress 3.3.

1. Make a table showing all quadratic residues and nonresidues modulo

p for p = 3, 5, 7, 13, 17, 19.

2. How many 84-th roots of 1 are there in the field of 113 elements?

3. Prove that
(−2
p

)
= 1 if p ≡ 1 or 3 mod 8, and

(−2
p

)
= −1 if p ≡ 5 or

7 mod 8.

98

4. Find
(91

167
)

using quadratic reciprocity.

5. Evaluate the following Legendre symbols:

(a)
(11

37
)
; (b)

(19
31
)
; (c)

(97
101

)
; (d)

(31
167

)
; (e)

(5
160465489

)
; (f)

(3083
3911

)
; (g)(43691

65537
)
.

Unit Summary

In this unit we have discussed about field, finite fields, the existence of

multiplicative generators of finite field, how to find the quadratic residues

and reciprocity and the square root of a residue. Also, we have studied

the Legendre symbol and its properties.

Glossary

Irreducible polynomial - Polynomials that are not divisible by any

polynomial of lower degree except for constants.

Root - A value which gives 0 when substituted in

place of x in a polynomial.

Primitive polynomial - Irreducible monic polynomial having exactly

one root in the field.

Guassian integers - Complex numbers whose real and imaginary

parts are integers.

99

Exercise 3.

1. Suppose that f is a power of a prime l. Find a simple formula for

the number of monic irreducible polynomials of degree f over Fp.

2. By computing g.c.d.(f, f ′), find all multiple roots of f(X) = X7 +

X5 +X4 −X3 −X2 −X + 1 ∈ F3[X] in its splitting field.

3. Suppose that α ∈ Fp2 satisfies the polynomial X2 + aX + b, where

a, b ∈ Fp.

(a) Prove that αp also satisfies this polynomial.

(b) Prove that if α /∈ Fp, then a = −α− αp and b = αp+1.

(c) Prove that if α /∈ Fp and c, d ∈ Fp then (cα+d)p+1 = d2−acd+bc2

(which is ∈ Fp).

(d) Let i be a square root of −1 in F192. Use part (c) to find (2+3i)101

(i.e., write it in the form a+ bi, a, b ∈ F19).

4. For each of the following fields Fq, where q = pf , find an irreducible

polynomial with coefficients in the prime field whose root α is prim-

itive (i.e., generates F∗q), and write all of the powers of α as polyno-

mials in α of degree < f : (a) F4; (b) F8; (c) F27; (d) F25.

5. Find the Gauss sum G = ∑q−1
j=1

(
j
q

)
ξj (here ξ is a q-th root of 1 in Fpf ,

where pf ≡ 1 mod q) when:

(a) q = 7, p = 29, f = 1, ξ = 7;

(b) q = 5, p = 19, f = 2, ξ = 2− 4i, where i is a root of X2 + 1;

100

(c) q = 7, p = 13, f = 2, ξ = 4 + α, where α is a root of X2 − 2.

6. Let m = a4 + 1, a ≤ 2. Find a positive integer x between 0 and m/2

such that x2 ≡ 2 mod m. Use this to find
√

2 in Fp when p is each of

the following: the Fermat primes 17, 257, 65537; p = 41 = (34 +1)/2,

p = 1297, and p = 1201. (Hint: see the proof of Proposition 3.3.9.)

7. Let p and q be two primes with q ≡ 1 mod p. Let ξ be a primitive

p-th root of unity in Fq. Find a formula in terms of ξ for a square

root of
(−1
p

)
p in Fq.

8. Evaluate the Legendre symbol
(1801

8191
)

(a) using the reciprocity law

only for the Legendre symbol (i.e., factoring all numbers that arise),

and (b) without factoring any odd integers, instead using the reci-

procity law for the Jacobi symbol.

9. (a) Let p be an odd prime. Prove that −3 is a residue in Fp if and

only if p ≡ 1 mod 3.

(b) Prove that 3 is a quadratic nonresidue modulo any Mersenne

prime greater than 3.

10. Prove that a quadratic residue can never be a generator of F∗p.

11. (a) Let p be an odd prime, and let a, b, c be integers with p | a. Prove

that the number of solutions x ∈ {0, 1, 2, ..., p−1} to the congruence

ax2 + bx + c ≡ 0 mod p is given by the formula 1 +
(
D
p

)
, where

101

D = b2− 4ac is the discriminant.

(b) How many solutions in F83 are there to each of the following

equations: (i) x2 + 1 = 0; (ii) x2 + x+ 1 = 0; (iii) x2 + 21x− 11 = 0;

(iv) x2 + x+ 21 = 0; (v) x2 − 4x− 13 = 0?

(c) How many solutions in F97 are there to each of the equations in

part (b)?

12. Let p = 2081, and let n be the smallest positive nonresidue modulo

p. Find n, and use the method in the text to find a square root of

302 modulo p.

Answers :

Check your progress 3.1.

1. x2 + 2x+ 2

x2 + x+ 2.

2. Q(
√

2, i).

3. π + 2 is not algebraic over Q.

Check your progress 3.2.

1.

prime p 2 3 5 7 11 13 17

smallest generator 1 2 2 3 2 2 3

number of generators 1 1 2 2 4 4 8

2. 56.

102

3. 2 for d = 1: X,X + 1; 1 for d = 2: X2 + X + 1; 2 for d = 3:

X3 + X2 + 1, X3 + X + 1; 3 for d = 4: X4 + X3 + 1, X4 + X + 1,

X4 + X3 + X2 + X + 1; 6 for d = 5: X5 + X3 + 1, X5 + X2 + 1,

X5 +X4 +X3 +X2 +1, X5 +X4 +X3 +X+1, X5 +X4 +X2 +X+1,

X5 + X3 + X2 + X + 1; 9 for d = 6: X6 + X5 + 1, X6 + X3 + 1,

X6 +X + 1, X6 +X5 +X4 +X2 +X + 1, X6 +X5 +X4 +X + 1,

X6 +X5 +X3 +X2 +1, X6 +X5 +X2 +X+1, X6 +X4 +X3 +X+1,

X6 +X4 +X2 +X + 1.

4. 3 for d = 1: X, X ± 1; 3 for d = 2: X2 + 1, X2±X − 1; 8 ford = 3:

X3 +X2± (X − 1), X3−X2± (X + 1), X3± (X2− 1), X3−X ± 1;

18 for d = 4; 48 for d = 5; 116 for d = 6.

5. (a) g.c.d. = 1 = X2g + (X + 1)f ;

(b) g.c.d. = X3 +X2 + 1 = f + (X2 +X)g;

(c) g.c.d. = 1 =(X − 1)f − (X2 −X + 1)g;

(d) g.c.d. = X + 1 = (X − 1)f − (X3 −X2 + 1)g;

(e) g.c.d. = X + 78 = (50X + 20)f + (51X3 + 26X2 + 27X + 4)g.

Check your progress 3.3.

1. The sets of residues are: for p = 3, {1}; for p = 5, {1, 4}; for p = 7,

{1, 2, 4}; for p= 13, {1, 3, 4, 9, 10, 12}; for p= 17, {1, 2, 4, 8, 9, 13, 15, 16};

for p = 19, {1, 4, 5, 6, 7, 9, 11, 16, 17}.

2. g.c.d.(84, 1330) = 14.

103

3. Write
(−2
p

)
=

(−1
p

)(2
p

)
, and consider the four possible cases of p

mod 8.

4.
(91

167
)

=
(7

167
)(13

167
)

= −
(167

7
)(167

13
)

= −
(−1

7
)(−2

13
)

= −(−1)(−1) = −1.

5. (a) 1; (b) 1; (c) 1; (d) 1; (e) 1; (f) 1; (g) −1.

Exercise 3.

1. (pf − pf/l)/f .

2. Since g.c.d.(f, f ′) = X2 + 1, the multiple roots are ±α2, where α is

the generator of F∗9 in the text.

3. (a) Raising 0 = α2 + bα + c to the p-th power and using the fact

that bp = b and cp = c, we obtain 0 = (αp)2 + bαp + c. (b) The

polynomial’s two distinct roots are then α and αp. Then a is minus

the sum of the roots, and b is the product of the roots. (c) (cα+d)p+1

= (cαp + d)(cα + d), and then multiply out and use part (b). (d)

(2 + 3i)5(19+1)+1 = (22 + 32)5(2 + 3i) = 14(2 + 3i) = 9 + 4i.

4. (a) Let α be a root ofX2+X+1 = 0; then the-three successive powers

of α are α, α + 1, and 1. (b) Let α be a root of X3 +X+1 = 0; then

the seven successive powers of α are α, α2, α + 1, α2 + α, α2 +α+1,

α2 + 1, 1. (c) Let α be a root of X3 − X − 1 = 0; then the 26

successive powers of α are α, α2, α+l, α2 +α, α2 +α+ 1, α2−α+ 1,

−α2 − α + 1, α2 − 1, −α + 1, −α2 + α, α2 − α − 1, −α2 + 1, −1,

104

followed by the same 13 elements with all +′s and −′s reversed. (d)

Let α be a root of X2 − X + 2 = 0; then the 24 successive powers

of α are α, α − 2, −α − 2, 2α + 2, −α + 1, 2, then the same six

elements multiplied by 2, then multiplied by −1, then multiplied by

−2, giving all 24 powers of α.

5. (a) 14; (b) 9; (c) 9α.

6. a3 − a (see the proof of Proposition 3.3.9); 6, 60, 4080, 24, 210, 336.

7. Since q ≡ 1 mod p, there is a primitive p-th root of unity ξ in Fq.

Then G = ∑p−1
j=1

(
j
p

)
ξj has square

(−1
p

)
p (see the Lemma 3.3.12).

8. (a)
(1801

8191
)

=
(8191

1801
)

=
(987

1801
)

=
(3

1801
)(7

1801
)(47

1801
)

=
(1

3
)(2

7
)(15

47
)

= 1 · 1 ·(3
47
)(5

47
)

= −
(2

3
)(2

5
)

= −1.

(b)
(987

1801
)

=
(1801

987
)

=
(2.407

987
)

= −
(
−1

)(987
407

)
=
(173

407
)

=
(407

173
)

=
(61

173
)

=(173
61
)

=
(51

61
)

=
(61

51
)

=
(2.5

51
)

= −
(5

51
)

= −
(51

5
)

= −1.

9. (a)
(−3
p

)
=

(−1
p

)(3
p

)
=

(
− 1

)(p−1/2)(− 1
)(3−1)(p−1)/4(p

3
)

=
(
p
3
)
, which

= 1 if and only if p ≡ 1 mod 3.

(b)
(3

2p−1
)

= −
(2p−1

3
)

= −
(1

3
)

= −1.

10. Any power of a residue is a residue, so none of the nonresidues can

occur as a power, and that means a residue cannot be a generator.

11. (a) Solve by completing the square; show that the number of solutions

is the same as for the equation x2 ≡ D mod p. There is 1 solution

if D = 0, none if D is a nonresidue, and 2 if D is a residue. (b) 0, 0,

2, 1, 2; (c) 2, 2, 1, 0, 0.

105

12. n = 3; p − 1 = 25 · 65; r ≡ a33 ≡ 203 mod p (we compute 30233

by the repeated squaring method, successively squaring 5 times and

multiplying the result by 302); also by the repeated squaring method

we compute b ≡ n65 ≡ 888 mod p; one takes j = 22, i.e.,
√

302

mod p ≡ b4r ≡ 1292 mod p.

References:

1. Neal Koblit, A course in Number Theory and Cryptography, Springer

- Verlag, New York, 2nd edition, 2002.

Suggested Reading:

1. I. Niven and H. S. Zuckermann, An Introduction to Theory of Num-

bers (Edition 3), Wiley Eastern Ltd, New Delhi 1976

2. D. M. Burton, Elementary Number Theory, Brown Publishers, Iowa,

1989

3. K. Ireland and M. Rosen, A classic Introduction to Modern Number

Theory, Springer - Verlag, 1972

4. N. Koblit, Algebraic Aspects of Cryptography, Springer-Verlag, 1998.

106

107

UNIT - 4

108

Unit 4

Cryptography

Objectives.

By studying this unit, the students will

1. understand the cryptosystem.

2. know enciphering matrices.

3. review linear algebra.

4. solve a system of simultaneous congruences.

5. know to encipher a plaintext and decipher a ciphertext.

4.1 Some simple cryptosystems.

Cryptosystem: Cryptography is the study of methods of sending mes-

sages in disguised form so that only the intended recipients can remove

the disguise and read the message. The message we want to send is called

the plaintext and the disguised message is called the ciphertext. The

plaintext and ciphertext are written in some alphabet (usually, but not

109

always, they are written in the same alphabet) consisting of a certain

number N of letters. The term ”letter” (or ”character”) can refer not

only to the familiar A-Z, but also to numerals, blanks, punctuation marks,

or any other symbols that we allow ourselves to use when writing the mes-

sages. (If we don’t include a blank, for example, then all of the words are

run together, and the messages are harder to read.) The process of con-

verting a plaintext to a ciphertext is called enciphering or encryption,

and the reverse process is called deciphering or decryption.

The plaintext and ciphertext are broken up into message units. A

message unit might be a single letter, a pair of letters (digraph), a triple

of letters (trigraph), or a block of 50 letters. An enciphering trans-

formation is a function that takes any plaintext message unit and gives

us a ciphertext message unit. In other words, it is a map f from the

set P of all possible plaintext message units to the set C of all possi-

ble ciphertext message units. We shall always assume that f is a 1-to-1

correspondence. That is, given a ciphertext message unit, there is one

and only one plaintext message unit for which it is the encryption. The

deciphering transformation is the map f−1 which goes back and re-

covers the plaintext from the ciphertext. We can represent the situation

schematically by the diagram

P f−→ C f−1
−−→ P

Any such set-up is called a cryptosystem.

The first step in inventing a cryptosystem is to ”label” all possible

110

plaintext message units and all possible ciphertext message units by means

of mathematical objects from which functions can be easily constructed.

These objects are often simply the integers in some range. For example,

if our plaintext and ciphertext message units are single letters from the

26-letter alphabet A-Z, then we can label the letters using the integers 0,

1, 2, · · · , 25, which we call their ”numerical equivalents.” Thus, in place

of A we write 0, in place of S we write 18, in place of X we write 23,

and so on. As another example, if our message units are digraphs in the

27-letter alphabet consisting of A-Z and a blank, we might first let the

blank have numerical equivalent 26 (one beyond Z), and then label the

digraph whose two letters correspond to x, y ∈ {0, 1, 2, · · · , 26} by the

integer

27x+ y ∈ {0, 1, · · · , 728}.

Thus, we view the individual letters as digits to the base 27 and we view

the digraph as a 2-digit integer to that base. For example, the digraph

”NO” corresponds to the integer 27 · 13 + 14 = 365. Analogously, if we

were using trigraphs as our message units, we could label them by integers

729x + 27y + z ∈ {0, 1, · · · , 19682}. In general, we can label blocks of k

letters in an N -letter alphabet by integers between 0 and Nk − 1 by

regarding each such block as a k-digit integer to the base N .

In some situations, one might want to label message units using other

mathematical objects besides integers - for example, vectors or points on

some curve. But for the duration of this section we shall use integers.

111

Remark 4.1.1. Let us start with the case when we take a message unit

(of plaintext or of ciphertext) to be a single letter in an N -letter alpha-

bet labeled by the integers 0, 1, 2, · · · , N − 1. Then, by definition, an

enciphering transformation is a rearrangement of these N integers.

To facilitate rapid enciphering and deciphering, it is convenient to have

a relatively simple rule for performing such a rearrangement. One way is

to think of the set of integers {0, 1, 2, · · · , N −1} as Z/NZ, and make use

of the operations of addition and multiplication modulo N .

Example 4.1.2. Suppose we are using the 26-letter alphabet A - Z with

numerical equivalents 0 - 25. Let the letter P ∈ {0, 1, · · · , 25} stand for

a plaintext message unit. Define a function f from the set {0, 1, · · · , 25}

to itself by the rule

f(P) =


P + 3, if x < 23

P − 23, if x ≥ 23

In other words, f simply adds 3 modulo 26: f(P) ≡ P + 3 mod 26.

The definition using modular arithmetic is easier to write down and work

with. Thus, with this system, to encipher the word ”YES” we first con-

vert to numbers: 24 4 18, then add 3 moduo 26: 1 7 21, then translate

back to letters: ”BHV”.To decipher a message, one subtracts 3 modulo

26. For example, the ciphertext ”ZKB” yields the plaintext ”WHY”. This

112

cryptosystem was apparently used in ancient Rome by Julius Caesar, who

supposedly invented it himself.

Remark 4.1.3. Example 4.1.2 can be generalized as follows. Suppose we

are using an N -letter alphabet with numerical equivalents 0, 1, · · · , N−1.

Let b be a fixed integer. By a shift transformation we mean the en-

ciphering function f defined by the rule C = f(P) ≡ P + b mod N .

Julius Caesar’s cryptosystem was the case N = 26, b = 3. To decipher

a ciphertext message unit C ∈ {0, 1, · · · , N − 1}, we simply compute

P = f−1(C) ≡ C − b mod N .

Cryptanalysis. Now suppose that you are not privy to the encipher-

ing and deciphering information, but you would nevertheless like to be

able to read the coded messages. This is called breaking the code, and

the science of breaking codes is called cryptanalysis.

In order to break a cryptosystem, one needs two types of information.

The first is the general nature (the structure) of the system. For exam-

ple, suppose we know that the cryptosystem uses a shift transformation on

single letters of the 26-letter alphabet A-Z with numerical equivalents 0-

25, respectively. The second type of information is knowledge of a specific

choice of certain parameters connected with the given type of crptosys-

tem. In our example, the second type of information one needs to know

is the choice of the shift parameter b. Once one has that information,

one can encipher and decipher by the formulas C ≡ P + b mod N and

113

P ≡ C − b mod N .

We shall always assume that the general structural information is al-

ready known. In practice, users of cryptography often have equipment for

enciphering and deciphering which is constructed to implement only one

type of cryptosystem. Over a period of time the information about what

type of system they’re using might leak out. To increase their security,

therefore, they frequently change the choice of parameters used with the

system. For example, suppose that two users of the shift cryptosystem

are able to meet once a year. At that time they agree on a list of 52

choices of the parameter b, one for each week of the coming year.

The parameter b (more complicated cryptosystems usually have sev-

eral parameters) is called a key, or, more precisely, the enciphering key.

Example 4.1.4. So suppose that we intercept the message ”FQOCU-

DEM”, which we know was enciphered using a shift transformation on

single letters of the 26-letter alphabet, as in the Example 4.1.2 . It re-

mains for us to find the b. One way to do this is by frequency analysis.

This works as follows. Suppose that we have already intercepted a long

string of ciphertext, say several hundred letters. We know that ”E” is the

most frequently occurring letter in English language. So it is reasonable

to assume that the most frequently occurring letter in the ciphertext is

the encryption of E. Suppose that we find that ”U” is the most frequently

occurring character in the ciphertext. That means that the shift takes

”E” = 4 to ”U” = 20, i.e., 20 ≡ 4 + b mod 26, so that b = 16. To deci-

114

pher the message, then, it remains for us to subtract 16 (working modulo

26) from the numerical equivalents of ”FQOCUDEM”:

”FQOCUDEM” = 5 16 14 2 20 3 4 12 7→ 15 0 24 12 4 13 14 22 = ”PAY-

MENOW”.

Remark 4.1.5. In the case of the shift encryption of single letters of a 26-

letter alphabet it is not even necessary to have a long string of ciphertext

to find the most frequently occurring letter. After all, there are only 26

possibilities for b, and one can simply run through all of them. Most

likely, only one will give a message that makes any sense, and that b is

the enciphering key.

Thus, this type of cryptosystem is too simple to be much good. It

is too easy to break. An improvement is to use a more general type of

transformation of Z/NZ, called an affine map: C ≡ aP + b mod N ,

where a and b are fixed integers (together they form the enciphering key).

For example, working again in the 26-letter alphabet, if we want to en-

cipher our message ”PAYMENOW” using the affine transformation with

enciphering key a=7, b= 12, we obtain: 15 0 24 12 4 13 14 22 7→ 13 12

24 18 14 25 6 10 = ”NMYSOZGK”.

To decipher a message that was enciphered by means of the affine map

C ≡ aP + b mod N , one simply solves for P in terms of C, obtaining

P ≡ a′C + b′ mod N , where a′ is the inverse of a modulo N and b′ is

equal to −a−1b. Note that this works ony if g.c.d.(a,N) = 1; otherwise

we cannot solve for P in terms of C. If g.c.d(a,N) > 1, then it is easy

115

to see that more than one plaintext letter will give the same ciphertext

letter, so we cannot uniquely recover the plaintext from the ciphertext. By

definition, that is not an enciphering transformation: we always require

that the map be 1-to-1, i.e., that the plaintext be uniquely determined

from the ciphertext. To summarize, an affine cryptosystem in an N -letter

alphabet with parameters a ∈
(
Z/NZ

)∗ an b ∈ Z/NZ consists of the

rules:

C ≡ aP + b mod N, P ≡ a′C + b′ mod N,

where

a′ = a−1 in
(
Z/NZ

)∗
, b′ = −a−1b.

As a special case of the affine cryptosystems we can set a=1, thereby

obtaining the shift transformations. Another special case is when b=0:

P ≡ aC mod N , C ≡ a−1P mod N . The case b=0 is called a linear

transformation, meaning that the map takes a sum to a sum, i.e., if C1

is the encryption of P1 and C2 is the encryption of P2, then C1 + C2 is a

encryption of P1 + P2 (where, of course, we are adding modulo N).

Now suppose that we know that an intercepted message was enciphered

using an affine map single letters in an N -letter alphabet. We would like

to determine the enciphering key a, b so that we can read the message.

We need two bits of information to do this.

116

Example 4.1.6. Still working in our 26-letter alphabet, suppose that we

know the most frequently occurring letter of ciphertext is ”K”, and the

second most frequently occurring letter is ”D”. It is reasonable to assume

that these are the encryptions of ”E” and ”T”, respectively, which are

the two most frequently occurring letters in the English language. Thus,

replacing the letters by their numerical equivalents and substituting for

P and C in the deciphering formula, we obtain:

10a′ + b′ ≡ 4 mod 26,

3a′ + b′ ≡ 19 mod 26.

We have two congruences with two unknowns, a′ and b′. The quickest

way to solve is to subtract the two congruences to eliminate b′. We obtain

7a′ ≡ 11 mod 26, and a′ ≡ 7−111 ≡ 9 mod 26. Finally, we obtain b′ by

substituting this value for a′ in one of the congruences: b′ ≡ 4−10a′ ≡ 18

mod 26. So messages can be deciphered by means of the formula P ≡

9C + 18 mod 26.

Remark 4.1.7. Recall from linear algebra that n equations suffice to find

n unknowns only if the equations are independent (i.e., if the determinant

is nonzero). For example, in the case of 2 equations in 2 unknowns this

means that the straight line graphs of the equations intersect in a single

point (are not parallel). In our situation, when we try to cryptanalyze

an affine system from the knowledge of the two most frequently occur-

ring letters of ciphertext, we might find that we cannot solve the two

117

congruences uniquely for a′ and b′.

Example 4.1.8. Suppose that we have a string of ciphertext which we

know was enciphered using an affine transformation of single letters in

a 28-letter alphabet consisting of A-Z, a blank, and ?, where A-Z have

numerical equivalents 0-25, blank=26, ?=27. A frequency analysis reveals

that the two most common letters of ciphertext are ”B” and ”?”, in that

order. Since the most common letters in an English language text writ-

ten in this 28-letter alphabet are ” ” (blank) and ”E”, in that order, we

suppose that ”B” is the encryption of ” ” and ”?” is the encryption of ”E”.

This leads to the two congruences: a′ + b′ ≡ 26 mod 28, 27a′ + b′ ≡ 4

mod 28. Subtracting the two congruences, we obtain: 2a′ ≡ 22 mod 28,

which is equivalent to the congruence a′ ≡ 11 mod 14. This means that

a′ ≡ 11 or 25 mod 28, and then b′ ≡ 15 or 1 mod 28, respectively. The

fact of the matter is that both of the possible affine deciphering transfor-

mations 11C + 15 and 25C + 1 give ” ” and ”E” as the plaintext letters

corresponding to ”B” and ”?”, respectively. At this point we could try

both possibilities, and see which gives an intelligible message. Or we

could continue our frequency analysis. Suppose we find that ”I” is the

third most frequently occurring letter of ciphertext. Using the fact that

”T” is the third most common letter in the English language (of our 28

letters), we obtain a third congruence: 8a′ + b′ ≡ 19 mod 28. This extra

bit of information is enough to determine which of the affine maps is the

right one. We find that it is 11C + 15.

118

Digraph transformation.

We now suppose that our plaintext and ciphertext message units are two-

letter blocks, called digraphs. This means that the plaintext is split up

into two-letter segments. If the entire plaintext has an odd number of

letters, then in order to obtain a whole number of digraphs we add on

an extra letter at the end; we choose a letter which is not likely to cause

confusion, such as a blank if our alphabet contains a blank, or else ”X”

or ”Q” if we are using just the 26-letter alphabet.

Each digraph is then assigned a numerical equivalent. The simplest

way to do this is to take xN + y, where x is the numerical equivalent of

the first letter in the digraph, y is the numerical equivalent of the second

letter in the digraph, and N is the number of letters in the alphabet.

Equivalently, we think of a digraph as a 2-digit base-N integer. This

gives a 1-to-1 correspondence between the set of all digraphs in the N -

letter alphabet and the set of all nonnegative integers less than N 2. We

described this ”labeling” of digraphs before in the special case when N =

27.

Next, we decide upon an enciphering transformation, i.e., a rearrange-

ment of the integers {0, 1, 2, · · · , N2−1}. Among the simplest enciphering

transformations are the affine ones, where we view this set of integers as

Z/N2Z, and define the encryption of P to be the nonnegative integer less

than N 2 satisfying the congruence C ≡ aP + b mod N 2. Here, as before,

a must have no common factor with N (which means it has no common

119

factor with N 2), in order that we have an inverse transformation telling

us how to decipher: P ≡ a′C + b′ mod N 2, where a′ ≡ a−1 mod N 2,

b′ ≡ −a−1b mod N 2. We translate C into a two-letter block of cipher-

text by writing it in the form C = x′N + y′, and then looking up the

letters with numerical equivalents x′ and y′.

Example 4.1.9. Suppose we are working in the 26-letter alphabet and

using the digraph enciphering transformation C ≡ 159P + 580 mod 676.

Then the digraph ”NO” has numerical equivalent 13 · 26 + 14 = 352 and

is taken to the ciphertext digraph 159 · 352 + 580 ≡ 440 mod 676, which

is “QY”. The digraph “ON” has numerical equivalent 377, and is taken

to 359=“NV”. Notice that the digraphs change as a unit, and there is no

relation between the encryption of one digraph and that of another one

that has a letter in common with it or even consists of the same letters

in the reverse order.

Remark 4.1.10. To break a digraphic encryption system which uses an

affine transformation C ≡ aP + b mod N 2, we need to know the ci-

phertext corresponding to two different plaintext message units. Since

the message units are digraphs, a frequency analysis meas counting which

two-letter blocks occur most often in a long string of ciphertext (of course,

counting only those occurrences where the first letter begins a message

unit, ignoring the occurrences of the two letters which straddle two mes-

sage units), and comparing with the known frequency of digraphs in En-

glish language texts (written in the same alphabet). For example, if we

use the 26-letter alphabet, statistical analyses seem to show that ”TH”

120

and ”HE” are the two most frequently occurring digraphs, in that or-

der. Knowing two plaintext-ciphertext pairs of digraphs is often (but not

always) enough to determine a and b.

Example 4.1.11. You know that your adversary is using a cryptosys-

tem with a 27-letter alphabet, in which the letters A-Z have numerical

equivalents 0-25, and blank=26. Each digraph then corresponds to an

integer between 0 and 728 = 272 − 1 according to the rule that, if the

two letters in the digraph have numerical equivalents x and y, then the

digraph has numerical equivalent 27x + y, as explained earlier. Suppose

that a study of a large sample of ciphertext reveals that the most fre-

quently occurring digraphs are (in order) ”ZA”,”IA”,and ”IW”. Suppose

that the most common digraphs in the English language (for text written

in our 27-letter alphabet) are ”E ” (i.e., ”E blank”), ”S ”,” T”. You know

that the cryptosystem uses an affine enciphering transformation modulo

729. Find the deciphering key, and read the message ”NDXBHO”. Also

find the enciphering key.

Solution. We know that plaintexts are enciphered by means of the rule

C ≡ aP + b mod 729, and that ciphertexts can be deciphered by means

of the rule P ≡ a′C+ b′ mod 729; here a, b form the enciphering key, and

a′, b′ form the deciphering key. We first want to find a′ and b′. We know

how three digraphs are deciphered, and, after we replace the digraphs by

their numerical equivalents, this gives us the three congruences:

121

675a′ + b′ ≡ 134 mod 729,

216a′ + b′ ≡ 512 mod 729,

238a′ + b′ ≡ 721 mod 729.

If we try to eliminate b′ by subtracting the first two congruences, we

arrive at 459a′ = 351 mod 729, which does not have a unique solution a′

mod 729 (there are 27 solutions). We do better if we subtract the third

congruence from the first, obtaining 437a′ ≡ 142 mod 729. To solve this,

we must find the inverse of 437 modulo 729. By way of review of the

Euclidean algorithm, let’s go through that in detail:

729 = 437 + 292

437 = 292 + 145

292 = 2 · 145 + 2

145 = 72 · 2 + 1

and then

1 = 145− 72 · 2

= 145− 72(292− 2 · 145)

= 145 · 145− 72 · 292

= 145(437− 292)− 72 · 292

= 145 · 437− 217 · 292

= 145 · 437− 217(729− 437)

≡ 362 · 437 mod 729.

122

Thus, a′ ≡ 362 ·142 ≡ 374 mod 729, and then b′ ≡ 134−675 ·374 ≡ 647

mod 729. Now applying the deciphering transformation to the digraphs

”ND”, ”XB” and ”HO” of our message - they correspond to the integers

354, 622 and 203, respectively - we obtain the integers 365, 724 and 24.

Writing 365 = 13 · 27 + 14, 724 = 26 · 27 + 22, 24 = 0 · 27 + 24, we put

together the plaintext digraphs into the message ”NO WAY”. Finally, to

find the enciphering key we compute a ≡ a′−1 ≡ 374−1 ≡ 614 mod 729

(again using the Euclidean algorithm) and b ≡ −a′−1b′ ≡ −614 · 647 ≡ 47

mod 729.

Remark 4.1.12. Although affine cryptosystems with digraphs (i.e., mod-

ulo N 2) are better than the ones using single letters (i.e., modulo N), they

also have drawbacks. Notice that the second letter of each ciphertext di-

graph depends only on the second letter of the plaintext digraph. This

is because that second letter depends on the modN value of C ≡ aP + b

mod N 2, which depends only on P modulo N , i.e., only on the second

letter of the plaintext digraph. Thus, one could obtain a lot of infor-

mation (namely, a and b modulo N) from a frequency analysis of the

even-numbered letters of the ciphertext message. A similar remark ap-

plies to mod-Nk affine transformations of k-letter blocks.

123

Let Us Sum Up

• Cryptography is the study of methods of sending messages in dis-

guised form so that only the intended recipients can remove the dis-

guise and read the message.

• The message we want to send is called the plaintext.

• The disguised message is called the ciphertext.

• The process of converting a plaintext to a ciphertext is called enci-

phering or encryption, and reverse process is called deciphering or

decryption.

• An enciphering transformation is a function that takes any plaintext

message unit and gives us a ciphertext message unit.

• The deciphering transformation is the map f−1 which goes back and

recovers the plaintext from the ciphertext.

• The science of breaking codes is called cryptanalysis.

Check your progress 4.1.

1. In the 27-letter alphabet (with blank=26), use the affine enciphering

transformation with key a = 13, b = 9 to encipher the message

”HELP ME.”

2. How many different shift transformations are there with an N -letter

alphabet?

124

3. Find a formula for the number of different affine enciphering trans-

formations there are with an N -letter alphabet.

4. How many affine transformations are there when N = 26, 27, 29, 30?

4.2 Enciphering Matrices

Suppose we have an N -letter alphabet and want to send digraphs (two-

letter blocks) as our message units. In section 4.1 we saw how we can

let each digraph correspond to an integer considered modulo N 2, i.e., to

an element of Z/N2Z. An alternate possibility is to let each digraph

correspond to a vector, i.e., to a pair of integers

x
y

 with x and y each

considered modulo N . For example, if we’re using the 26-letter alphabet

A-Z with numerical equivalents 0-25, respectively, then the digraph NO

corresponds to the vector

13

14

. See the diagram.
We picture each digraph P as a point on an N ×N square array. That

is, we have an ”xy-plane”, except that each axis, rather than being a copy

of the real number line, is now a copy of Z/NZ. Just as the real xy-plane

is often denoted R2, this N ×N array is denoted
(
Z/NZ

)2.

Once we visualize digraphs as vectors (points in the plane), we then

interpret an ”enciphering transformation” as a rearrangement of the N ×

N array of points. More precisely, an enciphering map is a 1-to-l function

from
(
Z/NZ

)2 to itself.

Remark 4.2.1. For several centuries one of the most popular methods

125

of encryption was the so-called ”Vigenére cipher.” This can be described

as follows. For some fixed k, regard blocks of k letters as vectors in(
Z/NZ

)k. Choose some fixed vector b ∈
(
Z/NZ

)k (usually b was the

vector corresponding to some easily remembered ”key-word”), and enci-

pher by means of the vector translation C = P + b (where the ciphertext

message unit C and the plaintext message unit P are k-tuples of inte-

gers modulo N). This cryptosystem, unfortunately, is almost as easy to

break as a single-letter translation (see Example 4.1.1). Namely, if one

knows (or can guess) N and k, then one simply breaks up the ciphertext

in blocks of k letters and performs a frequency analysis on the first letter

in each block to determine the first component of b, then the same for the

126

second letter in each block, and so on.

Review of linear algebra. We now review how one works with

vectors in the real xy-plane and with 2 × 2-matrices with real entries.

Recall that, given a 2× 2 array of numbersa b

c d

 and a vector in the plane

x
y


(we shall write vectors as columns), one can apply the matrix to the vector

to obtain a new vector, as follows:a b

c d


x
y

 =def

ax+ by

cx+ dy

.

For a fixed matrix, this function from one vector to another vector is

called a linear transformation, meaning that it preserves sums and con-

stant multiples of vectors. Using this notation, we can view any set of

simultaneous equations of the form ax+by = e, cx+dy = f as equivalent

to a single matrix equation AX = B, where A denotes the matrixa b

c d

,

X denotes the vector of unknowns

x
y

, and B denotes the vector of

constants

e
f

. Stated in words, the simultaneous equations can thus

be interpreted as asking to find a vector which when ”multiplied” by a

certain known matrix gives a certain known vector. Thus, it is analogous

127

to the simple equation ax = b, which is solved by multiplying both sides

by a−1 (assuming a 6= 0). Similarly, one way to solve the matrix equation

AX = B is to find the inverse of the matrix A, and then apply A−1 to

both sides to obtain the unique vector solution X = A−1B.

By the inverse of the matrix A we mean the matrix which multiplies

by it to give the identity matrix 1 0

0 1


(the matrix which, when applied to any vector, keeps that vector the

same). But not all matrices have inverses. It is not hard to prove that a

matrix

A =

a b

c d


has an inverse if and only if its determinant D =def ad − bc is nonzero,

and that its inverse in that case is

1
D

 d −b

−c a

 =

 D−1d −D−1b

−D−1c D−1a



There are three possibilities for the solutions of the system of simultaneous

equations AX = B. First, if the determinant D is nonzero, then there

is precisely one solution X =

x
y

. If D = 0, then either there are

no solutions or there are infinitely many. The three possibilities have a

simple geometric interpretation. The two equations give straight lines in

the xy-plane. If D 6= 0, then they intersect in exactly one point (x, y).

128

Otherwise, they are parallel lines, which means either that they don’t

meet at all (the simultaneous equations have no common solution) or else

that they are really the same line (the equations have infinitely many

common solutions).

Next, let us suppose that we have a bunch of vectors X1 =

x1

y1

 , · · · ,

Xk =

xk
yk

, arranged as the columns of a 2 × k-matrix. Then we define

the matrix product

AX =

a b

c d


x1 · · · xk

y1 · · · yk

 =def

ax1 + by1 · · · axk + byk

cx1 + dy1 · · · cxk + dyk

 ,

i.e., we simply apply the matrix A to each column vector in order, obtain-

ing new column vectors. For example, the product of two 2× 2-matrices

is:
a b

c d


a
′ b′

c′ d′

 =

aa
′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′



Similar facts hold for 3× 3-matrices, which can be applied to 3-dimensional

column-vectors, and so on. However, the formulas for the determinant and

inverse matrix are more complicated. This concludes our brief review of

linear algebra over the real numbers.

Linear algebra modulo N . In section 4.1, when we were dealing with

single characters and enciphering maps of Z/NZ, we found that two easy

types of maps to work with were:

129

(a) ”linear” maps C = aP , where a is invertible in Z/NZ;

(b) ”affine” maps C = aP + b, where a is invertible in Z/NZ.

We have a similar situation when our message units are digraph-vectors.

We first consider linear maps. The difference when we work with
(
Z/NZ

)2

rather than Z/NZ is that now instead of an integer a we need a 2 ×

2-matrix, which we shall denote A. We start by giving a systematic ex-

planation of the type of matrices we need.

Let R be any commutative ring, i.e., a set with multiplication and

addition satisfying the same rules as in a field, except that we do not

require that any nonzero element have a multiplicative inverse. For ex-

ample, Z/NZ is always a ring, but it is not a field unless N is prime.

We let R∗ denote the subset of invertible elements of R. For example,(
Z/NZ

)∗ = {0 < j < N |g.c.d.(j,N) = 1}

If R is a commutative ring, we let M2(R) denote the set of all 2 ×

2- matrices with entries in R, with addition and multiplication defined

in the usual way for matrices. We call M2(R) a ”matrix ring over R” ;

M2(R) itself is a ring, but it is not a commutative ring, i.e., in matrix

multiplication the order of the factors makes a difference.

Earlier in this section, the matrices considered were the case when

R = R is the ring (actually, field) of real numbers. Recall that a matrix

a b

c d



with real numbers a, b, c, d has a multiplicative inverse if and only if the

130

determinant D = ad− bc is nonzero, and in that case the inverse matrix

is
 D−1d −D−1b

−D−1c D−1a



We have a similar situation when we work over an arbitrary ring R.

Namely, suppose that

A =

a b

c d

 ∈M2(R)

and D = det(A) =def ad− bc is in R∗. Let D−1 denote the multiplicative

inverse of D in R. Then
 D−1d −D−1b

−D−1c D−1a


a b

c d

 =

D
−1(da− bc) 0

0 D−1(−cb+ ad)



=

1 0

0 1

 ,

and we obtain the same result
1 0

0 1



if we multiply in the opposite order. Thus, A has an inverse matrix given

by the same formula as in the real number case:

131

A−1 =

 D−1d −D−1b

−D−1c D−1a



Example 4.2.2. Find the inverse of

A =

2 3

7 8

 ∈M2(Z/26Z)

Solution. HereD = 2·8−3·7 = −5 = 21 in Z/26Z. Since g.c.d.(21, 26) =

1, the determinant D has an inverse, namely 21−1 = 5. Thus,

A−1 =

 5 · 8 −5 · 3

−5 · 7 5 · 2

 =

 40 −15

−35 10

 =

14 11

17 10

 .

We check that

14 11

17 10


2 3

7 8

 =

105 130

104 131

 =

1 0

0 1

. Here, since we

are working in Z/26Z, we are using ”=” to mean that the entries are

congruent modulo 26.

Just as in the real number case, a 2 × 2-matrix

a b

c d



with entries in a ring R can be multiplied by a column-vector

x
y

 with

x, y ∈ R to get a new vector

x
′

y′

:

132

x
′

y′

 =

a b

c d


x
y

 =

ax+ by

cx+ dy

 .

This gives a ”linear map” from vectors to vectors, meaning that a linear

combination

k1x1 + k2x2

k1y1 + k2y2

, where k1 and k2 are in the ring R, is taken

to

k1x
′
1 + k2x

′
2

k1y
′
1 + k2y

′
2

. The only difference with the situation earlier in our

review of linear algebra is that now everything is in our ring R rather

than in the real numbers.

We shall want to apply all of this when our ring isR = Z/NZ. The next

proposition will be stated in that case, although the analogous proposition

is true for any R.

Proposition 4.2.3. Let

A =

a b

c d

 ∈M2(Z/NZ)

and set D = ad− bc.

The following are equivalent:

(a) g.c.d.(D,N) = 1;

(b) A has an inverse matrix;

(c) if x and y are not both 0 in (Z/NZ)2, then A

x
y

 6=
0

0

;

(d) A gives a 1-to-1 correspondence of Z/NZ2 with itself.

133

Proof. We already showed that (a)=⇒(b). It suffices now to prove

that (b)=⇒(d)=⇒(c)=⇒(a).

Suppose that (b) holds. Then part (d) also holds, because A−1 gives

the inverse map from

x
′

y′

 to

x
y

. Next, if we have (d), then

x
y

 6=
0

0



implies that A

x
y

 6= A

0

0

 =

0

0

, and so (c) holds. Finally, we prove

(c)=⇒(a) by showing that (a) false =⇒(c) false. So suppose that (a) is

false, and set m = g.c.d.(D,N) > 1 and let m′ = N/m. Three cases are

possible.

Case (i). If all four entries of A are divisible by m, set

x
y

 =

m
′

m′

,

to get a contradiction to (c).

Case (ii). If a and b are not both divisible by m, set

x
y

 =

−bm
′

am′

.

Then

A

x
y

 =

a b

c d


−bm

′

am′

 =

−abm
′ + bam′

−cbm′ + dam′

 =

 0

Dm′

 =

0

0

 ,

because m|D and so N = mm′|Dm′.

Case (iii). If c and d are not both divisible by m, set

x
y

 =

 dm′

−cm′

,

and proceed as in case (ii). These three cases exhaust all possibilities.

Thus, (a) false implies (c) false. This completes the proof.

134

Example 4.2.4. Solve the following systems of simultaneous congru-

ences:

(a) 2x+ 3y ≡ 1 mod 26,

7x+ 8y ≡ 2 mod 26;

(b) x+ 3y ≡ 1 mod 26,

7x+ 9y ≡ 2 mod 26;

(c) x+ 3y ≡ 1 mod 26,

7x+ 9y ≡ 1 mod 26.

Solution. The matrix form of the system (a) is AX ≡ B mod 26,

where A =

2 3

7 8

 ∈ M2(Z/26Z), X =

x
y

, and B =

1

2

. We obtain

the unique solution

X ≡ A−1B ≡

14 11

17 10


1

2

 ≡
10

11

 mod 26.

The matrix of the systems (b)-(c) does not have an inverse modulo 26,

since its determinant is 14, which has a common factor of 2 with 26.

However, we can work modulo 13, i.e., we can find the solution to the

same congruence mod 13 and see if it gives a solution which works modulo

26. Modulo 13 we obtain
x
y

 ≡
9 10

6 1


e
f



135

(where

e
f

 =

1

2

 in part (b) and

1

1

 in part (c)). This gives

x
y

 ≡
3

8



and

6

7

 mod 13, respectively. Testing the possibilities modulo 26, we

find that in part (b) there are no solutions, and in part (c) there are two

solutions: x = 6, y = 7 and x = 19, y = 20.

Another way to solve systems of equations (preferable sometimes, espe-

cially when the matrix is not invertible) is to eliminate one of the variables

(e.g., in parts (b) and (c), one could subtract 7 times the first congruence

from the second).

Remark 4.2.5. To return to cryptography, we see from Proposition 4.2.3

that we can get enciphering transformations of our digraph-vectors by

using matrices A ∈M2(Z/NZ) whose determinant has no common factor

with N :

A =

a b

c d

 , D = ad− bc, g.c, d.(D,N) = 1.

Namely, each plaintext message unit P =

x
y

 is taken to a ciphertext

C =

x
′

y′

 by the rule

C = AP , i.e.,

x
′

y′

 =

a b

c d


x
y

.

136

To decipher a message, we simply apply the inverse matrix:

P = A−1AP = A−1C, i.e.,

x
y

 =

 D−1d −D−1b

−D−1c D−1a


x
′

y′



Example 4.2.6. Working in the 26-letter alphabet, use the matrix A =2 3

7 8

 to encipher the message unit ”NO.”

Solution. We have:

AP =

2 3

7 8


13

14

 =

 68

203

 =

16

21

 ,

and so C = AP is ”QV”.

Remark 4.2.7. To encipher a plaintext sequence of k−digraphs P =

P1P2P3 · · ·Pk, we can write the k vectors as columns of a 2×k-matrix,

which we also denote P , and then multiply the 2 × 2-matrix A by the 2

×k-matrix P to get a 2 ×k-matrix C = AP of coded digraph-vectors.

Example 4.2.8. Continue as in Example 4.2.5 to encipher the plaintext

”NOANSWER.”

Solution. The numerical equivalent of ”NOANSWER” is the sequence

of vectors

13

14


 0

13


18

22


 4

17

. We have

C = AP =

2 3

7 8


13 0 18 4

14 13 22 17

 =

 68 39 102 59

203 104 302 164



137

=

16 13 24 7

21 0 16 8



i.e., the coded message is ”QVNAYQHI”

Example 4.2.9. In the situation of Examples 4.2.5 and 4.2.7, decipher

the ciphertext ”FWMDIQ.”

Solution. We have:

P = A−1C =

14 11

17 10


 5 12 8

22 3 16



=

 0 19 2

19 0 10

 = ”ATTACK”.

Remark 4.2.10. As in section 4.1, suppose that we have some limited

information from which we want to analyze how to decipher a string

of ciphertext. We know that the ”enemy” is using digraph-vectors in

an N -letter alphabet and a linear enciphering transformation C = AP .

However, we do not have the enciphering ”key” - the matrix A - or the

deciphering ”key” - the matrix A−1. But suppose we are able to determine

two pairs of plaintext and ciphertext digraphs: C1 = AP1 and C2 = AP2.

Perhaps we learned this information from an analysis of the frequency

of occurrence of digraphs in a long string of ciphertext. Or perhaps we

know from some outside source that a certain 4-letter plaintext segment

corresponds to a certain 4-letter ciphertext. In that case we can proceed

as follows to determine A and A−1. We put the two columns P1 and P2

138

together into a 2 × 2-matrix P , and similarly for the ciphertext columns.

We obtain an equation of 2 × 2-matrices: C = AP , in which C and P are

known to us, and A is the unknown. We can solve for A by multiplying

both sides by P−1 :

A = APP−1 = CP−1.

Similarly, from the equation P = A−1C we can solve for A−1:

A−1 = PC−1.

Example 4.2.11. Suppose that we know that our adversary is using a

2×2 enciphering matrix with a 29-letter alphabet, where A-Z have the

usual numerical equivalents, blank=26, ?=27, !=28. We receive the mes-

sage

”GFPYJP X?UYXSTLADPLW,”

and we suppose that we know that the last five letters of plaintext are

our adversary’s signature ”KARLA.” Since we don’t know the sixth letter

from the end of the plaintext, we can only use the last four letters to

make two digraphs of plaintext. Thus, the ciphertext digraphs DP and

LW correspond to the plaintext digraphs AR and LA, respectively. That

is, the matrix P made up from AR and LA is the result of applying the

unknown deciphering matrix A−1 to the matrix C made up from DP and

139

LW:
 0 11

17 0

 = A−1

 3 11

15 22



Thus,

A−1 =

 0 11

17 0


 3 11

15 22


−1

=

 0 11

17 0


 3 13

23 7

 =

21 19

22 18

 ,

and the full plaintext message is

21 19

22 18


6 15 9 26 27 24 18 11 3 11

5 24 15 23 20 23 19 0 15 22



=

18 17 10 26 19 13 14 28 0 11

19 8 4 0 26 14 13 10 17 0


= ”STRIKE AT NOON!KARLA.”

Remark 4.2.12. In order for this to work, notice that the matrix P

formed by the two known plaintext digraphs must be invertible, i.e., its

determinant D must have no common factor with the number of letters

N . What if we are not so fortunate? If we happen to know another

ciphertext-plaintext pair,hen we could try to use that pair of columns in

place of either the first or second columns of P and C, hoping to obtain

then an invertible matrix. But suppose we have no further information,

or that none of the known plaintext digraphs give us an invertible matrix

P . Then we cannot find A−1 exactly. However, we might be able to

140

get enough information about A−1 to cut down drastically the number of

possibilities for the deciphering matrix. We now illustrate this with an

example.

Example 4.2.13. Suppose we know that our adversary is using an enci-

phering matrix A in the 26-letter alphabet. We intercept the ciphertext

“WKNCCHSSJH,” and we know that the first word is “GIVE.” We want

to find the deciphering matrix A−1 and read the message.

Solution. If we try to proceed as in Example 4.2.11, writing

P = “GIVE” =

6 21

8 4

 , C = ”WKNC” =

22 13

10 2

, and

A−1 = PC−1,

we immediately run into a problem, since det(C) = 18 and g.c.d.(18, 26) =

2. We can proceed as follows. Let Ā denote the reduction modulo 13

of the matrix A, and similarly for P̄ and C̄. If we consider these ma-

trices in M2(Z/13Z), we can take C−1 (more precisely, C̄−1), because

g.c.d.(det(C), 13) = 1. Thus, from P̄ = Ā−1C̄ we can compute

Ā−1 = P̄ C̄−1 =

6 8

8 4


 9 0

10 2


−1

=

2 4

3 2



Since the entries of A−1, which are integers mod 26, must reduce to

2 4

3 2



modulo 13, it follows that there are two possibilities for each entry in the

141

matrix A−1. More precisely,

A−1 =

2 4

3 2

 + 13A1,

where A1 ∈ M2(Z/2Z) is a 2× 2-matrix of 0’s and 1’s. That leaves

24 = 16 possibilities. However, in the first place, since A−1 is invertible,

its determinant must be prime to 26, and hence also prime to 2 (i.e., odd).

This consideration rules out all but 6 possibilities for A1. In the second

place, when we substitute

2 4

3 2

 + 13A1

for A−1 in the equation

A−1

22 13

10 2

 =

6 21

8 4



(this means entry-by-entry congruence mod 26), we eliminate all but 2

possibilities, namely,

A1 =

1 0

1 1

 or

1 1

1 1

 , i.e.,

A−1 =

15 4

16 15

 or

15 17

16 15

 .

Attempting to decipher with the first matrix yields “GIVEGHEMHP,”

142

which must be wrong. Deciphering with the second matrix

A−1 =

15 17

16 15



leads to “GIVETHEMUP.” So that must be correct. Although a certain

amount of trial and error is involved, it’s better than running through all

157,248 possibilities for a deciphering matrix A−1 ∈M2(Z/26Z)∗.

Remark 4.2.14. In Example 4.2.13 it would perhaps be more efficient

to adjust the 1 entries in Ā−1 by multiples of 13 so that they become

divisible by 2, i.e., to define A1 by writing:

A−1 =

 2 4

16 2

 + 13A1.

Then one can obtain information on A1 by working modulo 2, since we

now have A1C ≡ P mod 2.

Affine enciphering transformations. A more general way to enci-

pher a digraph-vector P =

x
y

 is to apply a 2 × 2-matrix A =

a b

c d

 ∈

M2(Z/NZ) and then add a constant vector B =

e
f

:

C = AP +B

143

i.e.,

x
′

y′

 =

a b

c d


x
y

 +

e
f

 =

ax+ by + e

cx+ dy + f

 .

This is called an ”affine” map, and is analogous to the enciphering function

C = aP + b that we studied in section 4.1 when we were using single-

letter message units. Of course, as before, we are using ”=” to mean the

corresponding entries are congruent mod N.

The inverse transformation that expresses P in terms of C can be found

by subtracting B from both sides and then applying A−1 to both sides:

P = A−1C − A−1B

This is also an affine transformation P = A′C +B′, where A′ = A−1 and

B′ = −A−1B. Notice that we must assume that A is an invertible matrix

in order to be able to decipher uniquely.

Suppose we know that our adversary is using an fine enciphering trans-

formation of digraph-vectors with an N -letter alphabet. To determine

A and B (or to determine A′ = A−1 and B′ = −A−1B), we need at

least three digraph pairs. Suppose we know that the ciphertext digraphs

C1, C2, C3 correspond to the plaintext digraphs P1, P2, P3:

P1 = A′C1 +B′

P2 = A′C2 +B′

P3 = A′C3 +B′.

144

To find A′ and B′ we can proceed as follows. Subtract the last equation

from the first two, and then make a 2 × 2-matrix P from the two columns

P1−P3 and P2−P3 and a 2 × 2-matrix C from the two columns C1−C3

and C2 − C3. We obtain the matrix equation P = A′C, which can be

solved for A′ (provided that C is invertible) as we did in the case of linear

enciphering transformations. Finally, once we find A′ = A−1, we can

determine B′ from any of the above three equations, e.g., B′ = P1−A′C1.

Let Us Sum Up

• An enciphering map is a 1-to-l function from
(
Z/NZ

)2 to itself.

• By the inverse of the matrix A we mean the matix which multiplies

by it to give the identity matrix

1 0

0 1

.

• A =

a b

c d

 has an inverse if and only if its determinant D =def

ad− bc is nonzero.

•
(
Z/NZ

)
is always a ring, but it is not a field unless N is prime.

• To encipher a digraph-vector P =

x
y

, apply a 2 × 2-matrix A =

a b

c d

 ∈M2(Z/NZ) and then add a constant vector B =

e
f

 such

that C = AP + B

145

Check your progress 4.2.

1. Find the inverses of the following matrices mod N . Write the

entries in the inverse matrix as nonnegative integers less than N .

(a)

1 3

4 3

 mod 5 (b)

1 3

4 3

 mod 29

(c)

15 17

4 9

 mod 26 (d)

40 0

0 21

 mod 841

(e)

197 62

603 271

 mod 841

Unit Summary

In this unit we have studied about Cryptosystem, Cryptanalysis and Di-

graph transformation. Also we have learned about Enciphering Matrices,

Review of linear algebra, Linear algebra modulo and Affine enciphering

transformations.

Glossary

Cryptography - The study of methods of sending messages in

disguised form.

Encryption - The process of converting plaintext into ciphertext.

Decryption - The process of converting ciphertext into plaintext.

Affine map - A function that combines a linear transformation

with a translation.

146

Digraph - Two-letter blocks.

Exercise 4.

1. Using frequency analysis, cryptanalyze and decipher the following

message, which you know was enciphered using a shift transformation

of single-letter plaintext message units in the 26-letter alphabet:

PXPXKXENVDRUXVTNLXHYMXGMAXYKXJN

XGVRFXMAHWGXXWLEHGZXKVBIAXKMXQM.

2. In a long string of ciphertext which was encrypted by means of an

affine map on single-letter message units in the 26-letter alphabet,

you observe that the most frequently occurring letters are ”Y” and

”V”, in that order. Assuming that those ciphertext message units

are the encryption of ”E” and ”T”, respectively, read the message

”QAOOYQQEVHEQV”.

3. You are trying to cryptanalyze an affine enciphering transformation

of single-letter message units in a 37-letter alphabet. This alpha-

bet includes the numerals 0-9, which are labeled by themselves (i.e.,

by the integers 0-9). The letters A-Z have numerical equivalents

10-35, respectively, and blank=36. You intercept the ciphertext

”OH7F86BB46R3627O266BB9” (here the O’s are the letter ”oh”,

not the numeral zero). You know that the plaintext ends with the

signature ”007” (zero zero seven). What is the message?

147

4. You intercept the ciphertext ”OFJDFOHFXOL”, which was enci-

phered using an affine transformation of single-letter plaintext units

in the 27-letter alphabet (with blank=26). You know that the first

word is ”I ” (”I” followed by blank). Determine the enciphering key,

and read the message.

5. A plaintext message unit P is said to be fixed for a given enciphering

transformation f if f(P) = P . Suppose we are using an affine enci-

phering transformation on single-letter message units in an N -letter

alphabet. In this problem we also assume that the affine map is not

a shift, i.e., that a 6= 1.

(a) Prove that if N is a prime number, then there is always exactly

one fixed letter.

(b) Prove (for any N) that if our affine transformation is linear, i.e.,

if b = 0, then it has at least one fixed letter; and that, if N is even,

then a linear enciphering transformation has at least two fixed let-

ters.

(c) Give an example for some N of an affine enciphering transforma-

tion which has no fixed letter.

6. Now suppose that our message units are digraphs in an N -letter

alphabet. Find a formula for the number of different affine en-

ciphering transformations there are. How many are there when

N = 26, 27, 29, 30?

7. (a)x+ 4y ≡ 1 mod 9, 5x+ 7y ≡ 1 mod 9

148

(b)x+ 4y ≡ 1 mod 9 5x+ 8y ≡ 1 mod 9

(c) x+ 4y ≡ 1 mod 9 5x+ 8y ≡ 2 mod 9

(d)x+ 4y ≡ 0 mod 9 5x+ 8y ≡ 0 mod 9

8. (a) 17x+ 11y ≡ 7 mod 29 13x+ 10y ≡ 8 mod 29

(b) 17x+ 11y ≡ 0 mod 29 13x+ 10y ≡ 0 mod 29

(c) 9x+ 13y ≡ 0 mod 29 16x+ 13y ≡ 0 mod 29

(d)9x+ 20y ≡ 10 mod 29 16x+ 13y ≡ 21 mod 29

(e)9x+ 20y ≡ 1 mod 29 16x+ 13y ≡ 2 mod 29

9. (a)480x+ 971y ≡ 416 mod 1111 297x+ 398y ≡ 319 mod 1111

(b)480x+ 971y ≡ 109 mod 1111 297x+ 398y ≡ 906 mod 1111

(c)480x+ 971y ≡ 0 mod 1111 297x+ 398y ≡ 0 mod 1111

(d)480x+ 971y ≡ 0 mod 1111 298x+ 398y ≡ 0 mod 1111

(e)480x+ 971y ≡ 648 mod 1111 298x+ 398y ≡ 1004 mod 1111

10. The Fibonnacci numbers can be defined by the rule f1 = 1, f2 = 1,

f3 = 2, fn+1 = fn + fn−1 for n > 1, or, equivalently, by means of the

matrix equation

fn+1 fn

fn fn−1

 =

1 1

1 0


n

.

Using matrix form of the definition, prove that fn is even if and only

if n is divisible by 3. More generally, prove that fn is divisible by a

149

if and only if n is divisible by b for the following a and b: (a)a = 2,

b = 3; (b)a = 3, b = 4; (c)a = 5, b = 5; (d)a = 7, b = 8; (e) a = 8,

b = 6; (f)a = 11, b = 10.

11. You intercept the message ”SONAFQCHMWPTVEVY” which you

know resulted from a linear enciphering transformation of digraph-

vectors, where the sender used the usual 26-letter alphabet A-Z with

numerical equivalents 0-25, respectively. An earlier statistical anal-

ysis of a long string of intercepted ciphertext revealed that the most

frequently occurring ciphertext digraphs were ”KH” and ”XW” in

that order. You take a guess that those digraphs correspond to ”TH”

and ”HE,” respectively, since those are the most frequently occurring

digraphs in most long plaintext messages on the subject you think is

being discussed. Find the deciphering matrix, and read the message.

12. You intercept the message ”ZRIXXYVBMNPO,” which you know

resulted from a linear enciphering transformation of digraph-vectors

in a 27-letter alphabet, in which A-Z have numerical equivalents 0-25,

and blank=26. You have found that the most frequently occurring

ciphertext digraphs are ”PK” and ”RZ.” You guess that they cor-

respond to the most frequently occurring plaintext digraphs in the

27-letter alphabet, namely, ”E ” (E followed by blank) and ”S .” Find

the deciphering matrix, and read the message.

13. You intercept the message ”!IWGVIEX!ZRADRYD,” which was sent

using a linear enciphering transformation of digraph-vectors in a

150

29- letter alphabet, in which A-Z have numerical equivalents 0-25,

blank=26, ?=27, !=28. You know that the last five letters of plain-

text are the sender’s signature ”MARIA.”

(a) Find the deciphering matrix, and read the message.

(b) Find the enciphering matrix, and, impersonating Maria’s friend

Jo, send the following reply in code: ”DAMN FOG! JO.”

Answers.

Check your progress 4.1

1. THRPXDH.

2. N .

3. Nϕ(N) = N 2 ∏
p|N(1− 1

p).

4. 312, 486, 812, 240.

Check your progress 4.2

1. (a)

3 2

1 1

; (b)

19 10

23 16

; (c)

11 11

24 1

; (d)

820 0

0 801

; (e)

127 303

546 353

.

Exercise 4.

1. Use the fact that ”X” occurs most frequently in the ciphertext to

find that b = 19. The message is: WEWERELUCKYBECAUSEOF-

TENTHEFREQUENCYMETHODNEEDSLONGERCIPHERTEXT.

151

2. SUCCESSATLAST.

3. AGENT 006 IS DEAD 007.

4. You find 9 possibilities for a′ and b′: a′ = 1, 4, 7, 10, 13, 16, 19, 22, 25,

and b′ = 21, 6, 18, 3, 15, 0, 12, 24, 9, respectively. Since you have no

more information to go on, simply try all nine possibilities; it turns

out that only the third one P ≡ 7C+ 18 mod 27 gives a meaningful

plaintext. The plaintexts of the nine tranformations are, respectively:

”I DY IB RIF,” ”I PS IH RIX;” ”I AM IN RIO,” ”I MG IT RIF,” ”I

YA IZ RIX,” ”I JV IE RIO,” ”I VP IK RIF,” ”I GJ IQ RIX,” ”I SD

IW RIO”.

5. (a) If a 6= 1, then the congruence (a− l)P ≡ −b mod N has exactly

one solution in the field FN = Z/NZ. (b) P = 0 is always fixed; for

N even (so a must be odd) the congruence (a− l)P ≡ 0 mod N at

least has the two solutions P = 0 and P = N/2. (c) Any example

with N even and b odd; more generally, any example in which b is

not divisible by g.c.d.(a− 1, N).

6. N 2ϕ(N 2) = N 4 ∏
p|N(1− 1

p); 210,912; 354,294; 682,892; 216,000.

7. (a)

6

1

; (b) none (since multiplying the second congruence by 2 and

subtracting from the first gives 6y ≡ 8 mod 9, which woud mean

3|8); (c)

6

1

,

3

4

,

0

7

; (d)

0

0

,

6

3

,

3

6

.

152

8. (a)

 9

21

; (b)

0

0

; (c) any vector with y = x, i.e.,

0

0

,

1

1

,

2

2

, etc.;

(d) any vector of the form

 n

15 + n

; (e) none.

9. (a)

787

759

;(b)

626

233

; (c)

0

1

; (d)

101

505

,

 202

1010

,

303

404

,

404

909

,

505

303

,

606

808

,

707

202

,

808

707

,

909

101

,

1010

606

;

(e) add

 31

800

 to any of the 11 vectors of part (d) and reduce mod

1111.

10. Use mathematical induction, proving the assertion for n = 1, 2, · · · , b

by inspection and then proving that the assertion for n implies the

assertion for n+ b. Namely, compute:

fn+b+1 fn+b

fn+b fn+b−1

 =

1 1

1 0


n+b

=

1 1

1 0


b 1 1

1 0


n

=

fb+1 fb

fb fb−1


fn+1 fn

fn fn−1



≡

c 0

0 c


fn+1 fn

fn fn−1



=

cfn+1 cfn

cfn cfn−1

 mod a,

153

where c ∈ (Z/aZ)∗, and use the induction assumption. (It can be

proved that for any integer a there is an integer b such that a|fn ⇐⇒

b|n, and that if a = pα is a power of a prime p 6= 5, then b is a divisor

of pα−1(p2 − 1); the proof uses a little algebraic number theory in

the real quadratic field generated by the golden ratio - note that the

golden ratio and its conjugate are the eigenvalues of the matrix in

the definition of Fibonacci numbers.)

11. A−1 =

23 7

18 5

 , ”SENATORTOOK.”

12. A−1 =

22 16

21 17

, ”MEET AT NOON.”

13. A−1 =

22 20

28 8

, ”WHY NO GO? MARIA”; A =

3 7

4 1

, ”JMLD

W EFWJV.”

References:

1. Neal Koblit, A course in Number Theory and Cryptography, Springer

- Verlag, New York, 2nd edition, 2002.

Suggested Reading:

1. I. Niven and H. S. Zuckermann, An Introduction to Theory of Num-

bers (Edition 3), Wiley Eastern Ltd, New Delhi 1976

2. D. M. Burton, Elementary Number Theory, Brown Publishers, Iowa,

1989

154

3. K. Ireland and M. Rosen, A classic Introduction to Modern Number

Theory, Springer - Verlag, 1972

4. N. Koblit, Algebraic Aspects of Cryptography, Springer-Verlag, 1998.

155

UNIT - 5

156

Unit 5

Public Key Cryptography

Objectives.

By studying this unit, the students will

1. recall the cryptosystem.

2. understand the idea of Public key and cryptography.

3. know trapdoor function.

4. understand the hash functions.

5. know the key exchange and Probabilistic Encryption.

6. learn RSA cryptosystem.

5.1 The idea of public key cryptography.

Recall that a cryptosystem consists of a 1-to-1 enciphering transformation

f from a set P of all possible plaintext message units to a set C of all

possible ciphertext message units. Actually, the term ”cryptosystem”

157

is more often used to refer to a whole family of such transformations,

each corresponding to a choice of parameters (the sets P and C, as well

as the map f , may depend upon the values of the parameters). For

example, for a fixed N -letter alphabet (witn numerical equivalents also

fixed once and for all), we might consider the affine cryptosystem (or

”family of cryptosystems”) which for each a ∈
(
Z/NZ

)∗ and b ∈ Z/NZ is

the map from P = Z/NZ to C = Z/NZ defined by C ≡ aP + b mod N .

In this example, the sets P and C are fixed (because N is fixed), but

the enciphering transformation f depends upon the choice of parameters

a, b. The enciphering transformation can then be described by (i) an

algorithm, which is the same for the whole family, and (ii) the values of

the parameters. The values of the parameters are called the enciphering

key KE. In our example, KE is the pair (a, b). In practice, we shall

suppose that the algorithm is publicly known, i.e., the general procedure

used to encipher cannot he kept secret. However, the keys can easily be

changed periodically and, if one wants, kept secret.

One also needs an algorithm and a key in order to decipher, i.e., com-

pute f−1. The key is called the deciphering key KD. In our example

of the affine cryptosystem family, deciphering is also accomplished by an

affine map, namely P ≡ a−1C − a−1b mod N , and so the deciphering

transformation uses the same algorithm as the enciphering transforma-

tion except with a different key, namely, the pair (a−1,−a−1b). (In some

cryptosystems, the deciphering algorithm, as well as the key, is different

from the enciphering algorithm.) We shall always suppose that the deci-

158

phering and enciphering algorithms are publicly known, and that it is the

keys KE and KD which can be concealed.

Let us suppose that someone wishes to communicate secretly using the

above affine cryptosystem C ≡ aP+b. We saw in section 4.1 that it is not

hard to break the system if one uses single-letter message units in an N -

letter alphabet. It is a little more difficult to break the system if one uses

digraphs, which can be regarded as symbols in an N 2-letter alphabet. It

would be safer to use blocks of k letters, which have numerical equivalents

in Z/NkZ. At least for k > 3 it is not easy to use frequency analysis,

since the number of possible k-letter blocks is very large, and one will find

many that are close contenders for the title of most frequently occurring

k-graph. If we want to increase k, we must be concerned about the length

of time it takes to do various arithmetic tasks (the most important one

being finding a−1 by the Euclidean algorithm) involved in setting up our

keys and carrying out the necessary transformations every time we send a

message or our friend at the other end deciphers a message from us. That

is, it is useful to have big-O estimates for the order of magnitude of time

(as the parameters increase, i.e., as the cryptosystem becomes ”larger”

) that it takes to: encipher (knowing KE), decipher (knowing KD), or

break the code by enciphering without knowledge of KE or deciphering

without knowledge of KD.

In all of the examples in Uint IV - and in all of the cryptosystems

used historically until about fifteen years ago - it is not really necessary

to specify the deciphering key once the enciphering key (and the general

159

algorithms) are known. Even if we are working with large numbers - such

as Nk with k fairly large - it is possible to determine the deciphering key

from the enciphering key using an order of magnitude of time which is

roughly the same as that needed to implement the various algorithms. For

example, in the case of an affine enciphering transformation of Z/NkZ,

once we know the enciphering key KE = (a, b) we can compute the de-

ciphering key KD = (a−1 mod Nk,−a−1b mod Nk) by the Euclidean

algorithm in O(log3(Nk)) bit operations.

Thus, with a traditional cryptosystem anyone who knew enough to

decipher messages could, with little or no extra effort, determine the en-

ciphering key. Indeed, it was considered naive or foolish to think that

someone who had broken a cipher might nevertheless not know the enci-

phering key. We see this in the following passage from the autobiography

of a well-known historical personality: Five or six weeks later, she

[Madame d′Urfé] asked me if I had deciphered the manuscript which had

the transmutation procedure. I told her that I had.

”Without the key, sir, excuse me if I believe the thing impossible.”

”Do you wish me to name your key, madame?”

”If you please.”

I then told her the key-word, which belonged to no language, and I saw

her surprise. She told me that it was impossible, for she believed herself

the only possessor of that word which she kept in her memory and which

she had never written down.

I could have told her the truth - that the same calculation which had

160

served me for deciphering the manuscript had enabled me to learn the

word - but on a caprice it struck me to tell her that a genie had revealed

it to me. This false disclosure fettered Madame d’Urfé to me. That day

I became the master of her soul, and I abused my power. Every time I

think of it, I am distressed and ashamed, and I do penance now in the

obligation under which I place myself of telling the truth in writing my

memoirs.

- Casanova, 1757, quoted in D. Kahn’s The Codebreakers

The situation persisted for another 220 years after this encounter be-

tween Casanova and Madame d′Urfé: knowledge of how to encipher and

knowledge of how to decipher were regarded as essentially equivalent in

any cryptosystem. However, in 1976 W. Diffie and M. Hellman discov-

ered an entirely different type of cryptosystem and invented ”public key

cryptography.”

By definition, a public key cryptosystem has the property that

someone who knows only how to encipher cannot use the enciphering key

to find the deciphering key without a prohibitively lengthy computation.

In other words the enciphering function f : P −→ C is easy to compute

once the enciphering key KE is known, but it is very hard in practice to

compute the inverse function f−1 : C −→ P . That is, from the stand-

point of realistic computability, the function f is not invertible (without

some additional information - the deciphering key KD). Such a function

f is called a trapdoor function. That is, a trapdoor function f is a

function which is easy to compute but whose inverse f−1 is hard to com-

161

pute without having some additional auxiliary information beyond what

is necessary to compute f . The inverse f−1 is easy to compute, however,

for someone who has this information KD (the ”deciphering key”).

There is a closely related concept of a one-way function. This is a func-

tion f which is easy to compute but for which f−1 is hard to compute and

cannot be made easy to compute even by acquiring some additional in-

formation. While the notion of a trapdoor function apparently appeared

for the first time in 1978 along with the invention of the RSA public-key

cryptosystem, the notion of a one-way function is somewhat older. What

seems to have been the first use of one-way functions for cryptography was

described in Wilkes’ book about time-sharing systems that was published

in 1968. The author describes a new one-way cipher used by R. M.

Needham in order to make it possible for a computer to verify passwords

without storing information that could be used by an intruder to imper-

sonate a legitimate user. In Needham’s system, when the user first

sets his password, or whenever he changes it, it is immediately subjected

to the enciphering process, and it is the enciphered form that is stored in

the computer. Whenever the password is typed in response to a demand

from the supervisor for the user’s identity to be established, it is again

enciphered and the result compared with the stored version. It would be

of no immediate use to a would-be malefactor to obtain a copy of the list

of enciphered passwords, since he would have to decipher them before he

could use them. For this purpose, he would need access to a computer

and even if full details of the enciphering algorithm were available, the

162

deciphering process would take a long time.

In 1974, G. Purdy published the first detailed description of such a

one-way function. The original passwords and their enciphered forms are

regarded as integers modulo a large prime p, and the ”one-way” map

Fp −→ Fp is given by a polynomial f(x) which is not hard to evaluate

by computer but which takes an unreasonably long time to invert. Purdy

used p = 264−59, f(x) = x224+17 +a1x
224+3 +a2x

3 +a3x
2 +a4x+a5, where

the coefficients ai were arbitrary 19-digit integers.

The above definitions of a public key cryptosystem and a one-way or

trapdoor function are not precise from a rigorous mathematical stand-

point. The notion of ”realistic computability” plays a basic role. But

that is an empirical concept that is affected by advances in computer

technology (e.g., parallel processor techniques) and the discovery of new

algorithms which speed up the performance of arithmetic tasks (some-

times by a large factor). Thus, it is possible that an enciphering trans-

formation that can safely be regarded as a one-way or trapdoor function

in 1994 might lose its one-way or trapdoor status in 2004 or in the year

2994.

It is conceivable that some transformation could be proved to be trap-

door. That is, there could be a theorem that provides a nontrivial lower

bound for the number of bit operations that would be required (”on the

average,” i.e., for random values of the key parameters) in order to figure

out and implement a deciphering algorithm without the deciphering key.

Here one would have to allow the possibility of examining a large number

163

of corresponding plaintext-ciphertext message units (as in our frequency

analysis of the simple systems in Unit IV), because, by the definition

of a public key system, any user can generate an arbitrary number of

plaintext-ciphertext pairs. One would also have to allow the use of ”prob-

abilistic” methods which, while not guaranteed to break the code at once,

would be likely to work if repeated many times. Unfortunately, no such

theorems have been proved for any of the functions that have been used as

enciphering maps. Thus, while there are now many cryptosystems which

empirically seem to earn the right to be called ”public key,” there is no

cryptosystem in existence which is provably public key.

The reason for the name ”public key” is that the information needed

to send secret messages - the enciphering key KE - can be made public

information without enabling anyone to read the secret messages. That

is, suppose we have some population of users of the cryptosystem, each

one of whom wants to be able to receive confidential communications

from any of the other users without a third party (either another user or

an outsider) being able to decipher the message. Some central office can

collect the enciphering key KE,A from each user A and publish all of the

keys in a ”telephone book” having the form

AAA Banking Company (9974398087453939, 2975290017591012)

Aardvark, Aaron (8870004228331, 7234752637937)
... ...

Someone wanting to send a message merely has to look up the enci-

phering key in this ”telephone book” and then use the general enciphering

164

algorithm with the key parameters corresponding to the intended recipi-

ent. Only the intended recipient has the matching deciphering key needed

to read the message.

In earlier ages this type of system would not have seemed to have any

particularly striking advantages. Traditionally, cryptography was used

mainly for military and diplomatic purposes. Usually there was a small,

well-defined group of users who could all share a system of keys, and new

keys could be distributed periodically (using couriers) so as to keep the

enemy guessing.

However, in recent years the actual and potential applications of cryp-

tography have expanded to include many other areas where communica-

tion systems play a vital role - collecting and keeping records of confi-

dential data, electronic financial transactions, and so on. Often one has a

large network of users, any two of whom should be able to keep their com-

munications secret from all other users as well as intruders from outside

the network. Two parties may share a secret communication on one occa-

sion, and then a little later one of them may want to send a confidential

message to a third party. That is, the ”alliances” - who is sharing a secret

with whom - may be continually shifting. It might be impractical always

to be exchanging keys with all possible confidential correspondents.

Notice that with a public key system it is possible for two parties to

initiate secret communications without ever having had any prior contact,

without having established any prior trust for one another, without ex-

changing any preliminary information. All of the information necessary

165

to send an enciphered message is publicly available.

Classical versus public key. By a classical cryptosystem (also called

a private key cryptosystem or a symmetrical cryptosystem), we

mean a cryptosystem in which, once the enciphering information is known,

the deciphering transformation can be implemented in approximately the

same order of magnitude of time as the enciphering transformation. All of

the cryptosystems in Unit IV are classical. Occasionally, it takes a little

longer for the deciphering - because one needs to apply the Euclidean al-

gorithm to find an inverse modulo N or one must invert a matrix (and this

can take a fairly long time if we work with k×k -matrices for k larger than

2) - nevertheless, the additional time required is not prohibitive. (More-

over, usually the additional time is required only once - to find KD- after

which it takes no longer to decipher than to encipher.) For example, we

might need only O(log2B) to encipher a message unit, and O(log3B) bit

operations to decipher one by finding KD from KE, where B is a bound

on the size of the key parameters. Notice the role of big-O estimates here.

If, on the other hand, the enciphering time were polynomial in logB

and the deciphering time (based on knowledge of KE but not KD) were,

say, polynomial in B but not in logB, then we would have a public key

rather than a classical cryptosystem.

Authentication. Often, one of the most important parts of a message is

the signature. A person’s signature - hopefully, written with an idiosyn-

166

cratic flourish of the pen which is hard to duplicate - lets the recipient

know that the message really is from the person whose name is typed

below. If the message is particularly important, it might be necessary

to use additional methods to authenticate the communication. And in

electronic communication, where one does not have a physical signature,

one has to rely entirely on other methods. For example, when an officer

of a corporation wants to withdraw money from the corporate account by

telephone, he/she is often asked to give some personal information (e.g.,

mother’s maiden name) which the corporate officer knows and the bank

knows (from data submitted when the account was opened) but which an

imposter would not be likely to know.

In public key cryptography there is an especially easy way to identify

oneself in such a way that no one could be simply pretending to be you.

Let A (Alice) and B (Bob) be two users of the system. Let fA be the

enciphering transformation with which any user of the system sends a

message to Alice, and let fB be the same for Bob. For simplicity, we shall

assume that the set P of all possible plaintext message units and the set C

of all possible ciphertext message units are equal, and are the same for all

users. Let P be Alice’s ”signature” (perhaps including an identification

number, a statement of the time the message was sent, etc.). It would

not be enough for Alice to send Bob the encoded message fB(P), since

everyone knows how to do that, so there would be no way of knowing that

the signature was not forged. Rather, at the beginning (or end) of the

message Alice transmits fBf−1
A (P). Then, when Bob deciphers the whole

167

message, including this part, by applying f−1
B , he finds that everything has

become plaintext except for a small section of jibberish, which is f−1
A (P).

Since Bob knows that the message is claimed to be from Alice, he applies

fA (which he knows, since Alice’s enciphering key is public), and obtains

P . Since no one other than Alice could have applied the function f−1
A

which is inverted by fA , he knows that the message was from Alice.

Hash functions. A common way to sign a document is with the help of

a hash function. Roughly speaking, a hash function is an easily com-

putable map f : x 7→ h from a very long input x to a much shorter output

h (for example, from strings of about 106 bits to strings of 150 or 200 bits)

that has the following property: it is not computationally feasible to find

two different inputs x and x′ such that f(x′) = f(x). If part of Alice’s

”signature” consists of the hash value h = f(x), where x is the entire text

of her message, then Bob can verify not only that the message was really

sent by Alice, but also that it wasn’t tampered with during transmission.

Namely, Bob applies the hash function f to his deciphered plaintext from

Alice, and checks that the result agrees with the value h in Alice’s sig-

nature. By assumption, no tamperer would have been able to change x

without changing the value h = f(x).

Key exchange. In practice, the public key cryptosystems for sending

messages tend to be slower to implement than the clasical systems that

are in current use. The number of plaintext message units per second

168

that can be transmitted is less. However, even if a network of users feels

attached to the traditional type of cryptosystem, they may want to use

a public key cryptosystem in an auxiliary capacity to send one another

their keys K = (KE, KD) for the classical system. Thus, the ground rules

for the classical cryptosystem can be agreed upon, and keys can be peri-

odically exchanged, using the slower public key cryptography; while the

large volume of messages would then be sent by the faster, older methods.

Probabilistic Encryption. Most of the number theory based cryp-

tosystems for message transmission are deterministic, in the sense that a

given plaintext will always be encrypted into the same ciphertext any time

it is sent. However, deterministic encryption has two disadvantages: (1) if

an eavesdropper knows that the plaintext message belongs to a small set

(for example, the message is either ”yes” or ”no”), then she can simply en-

crypt all possibilities in order to determine which is the supposedly secret

message; and (2) it seems to be very difficult to prove anything about the

security of a system if the encryption is deterministic. For these reasons,

probabilistic encryption was introduced.

Let Us Sum Up

• Cryptosystem consists of a 1-to-1 enciphering transformation f from

a set P of all possible plaintext message units to a set C of all possible

ciphertext message units.

169

• The enciphering transformation can be described by (i) an algorithm,

which is the same for the whole family, and (ii) the values of the

parameters. The values of the parameters are called the enciphering

key KE.

• The enciphering function f : P −→ C is easy to compute once the en-

ciphering key KE is known, but it is very hard in practice to compute

the inverse function f−1 : C −→ P .

• Classical cryptosystem is also called a private key cryptosystem or a

symmetrical cryptosystem.

• In classical cryptosystem if the enciphering information is known, the

deciphering transformation can be implemented in approximately the

same order of magnitude of time as the enciphering transformation.

• A Hash function is not computationally feasible to find two different

inputs x and x′ such that f(x′) = f(x).

Check your progress 5.1

1. How will you describe the enciphering transformation?

2. What is trapdoor function?

3. What is meant by a classical cryptosystem?

4. What is a hash function?

5. What are the disadvantages of deterministic encryption?

170

5.2 RSA

In looking for a trapdoor function f to use for a public key cryptosystem,

one wants to use an idea which is fairly simple conceptually and lends

itself to easy implementation. On the other hand, one wants to have

very strong empirical evidence - based on a long history of attempts to

find algorithms for f−1− that decryption cannot feasibly be accomplished

without knowledge of the secret deciphering key. For this reason it is

natural to look at an ancient problem of number theory: the problem

of finding the complete factorization of a large composite integer whose

prime factors are not known in advance. The success of the so-called

”RSA” cryptosystem (from the last names of the inventors Rivest,

Shamir, and Adleman), which is one of the oldest (16 years old) and most

popular public key cryptosystems, is based on the tremendous difficulty

of factoring.

We now describe how RSA works. Each user first chooses two ex-

tremely large prime numbers p and q (say, of about 100 decimal digits

each), and sets n = pq. Knowing the factorization of n, it is easy to

compute ϕ(n) = (p− l)(q − 1) = n+ 1− p− q. Next, the user randomly

chooses an integer e between 1 and ϕ(n) which is prime to ϕ(n).

Remark 5.2.1. Whenever we say ”random” we mean that the number

was chosen with the help of a random-number generator (or ”pseudo-

random” number generator), i.e., a computer program that generates a

171

sequence of digits in a way that no one could duplicate or predict, and

which is likely to have all of the statistical properties of a truly random

sequence. A lot has been written concerning efficient and secure ways

to generate random numbers, but we shall not concern ourselves with

this question here. In the RSA cryptosystem we need a random number

generator not only to choose e, but also to choose the large primes p and

q (so that no one could guess our choices by looking at tables of special

types of primes, for example, Mersenne primes or factors of bk ± 1 for

small b and relatively small k). What does a ”randomly generated” prime

number mean? Well, first generate a large random integer m. If m is

even, replace m by m + 1. Then apply suitable primality tests to see if

the odd number m is prime. If m is not prime, try m + 2, then m + 4,

and so on, until you reach the first prime number ≥ m, which is what you

take as your ”random” prime. According to the Prime Number Theorem,

the frequency of primes among the numbers near m is about 1/log(m),

so you can expect to test O(logm) numbers for primality before reaching

the first prime ≥ m.

Similarly, the ”random” number e prime to ϕ(n) can be chosen by

first generating a random (odd) integer with an appropriate number of

bits, and then successively incrementing it until one finds an e with

g.c.d.(e, ϕ(n)) = 1. (Alternately, one can perform primality tests until

one finds a prime e, say between max(p, q) and ϕ(n); such a prime must

necessarily satisfy g.c.d.(e, ϕ(n)) = 1.)

Thus, each user A chooses two primes pA and qA and a random number

172

eA which has no common factor with (pA− l)(qA− 1). Next, A computes

nA = pAqA, ϕ(nA) = nA + 1− pA− qA, and also the multiplicative inverse

of eA modulo ϕ(nA): dA =def e−1
A mod ϕ(nA). She makes public the

enciphering key KE,A = (nA, eA) and conceals the deciphering key KD,A =

(nA, dA). The enciphering transformation is the map from Z/nAZ to itself

given by f(P) ≡ P eA mod nA. The deciphering transformation is the

map from Z/nAZ to itself given by f−1(C) ≡ CdA mod nA. It is not

hard to see that these two maps are inverse to one another, because of

our choice of dA. Namely, performing f followed by f−1 or f−1 followed

by f means raising to the dAeA-th power. But, because dAeA leaves a

remainder of 1 when divided by ϕ(nA), this is the same as raising to the

1-st power (see the Corollary 2.1.16 which gives this in the case when P

has no common factor with nA; if g.c.d.(P, nA) > 1).

From the description in the last paragraph, it seems that we are work-

ing with sets P = C of plaintext and ciphertext message units that vary

from one user to another. In practice, we would probably want to choose

P and C uniformly throughout the system. For example, suppose we are

working in an N -letter alphabet. Then let k < ` be suitably chosen posi-

tive integers, such that, for example, Nk and N ` have approximately 200

decimal digits. We take as our plaintext message units all blocks of k

letters, which we regard as k-digit base-N integers, i.e., we assign them

numerical equivalents between 0 and Nk. We similarly take ciphertext

message units to be blocks of ` letters in our N -letter alphabet. Then

each user must choose his/her large primes pA and qA so that nA = pAqA

173

satisfies Nk < nA < N `. Then any plaintext message unit, i.e., integer

less than Nk, corresponds to an element in Z/nAZ (for ariy user’s nA);

and, since nA < N `, the image f(P) ∈ Z/nAZ can be uniquely written

as an `-letter block. (Not all `-letter blocks can arise - only those corre-

sponding to integers less than nA for the particular user’s nA.)

Example 5.2.2. Choose N = 26, k = 3, ` = 4. That is, the plaintext

consists of trigraphs and the ciphertext consists of four-graphs in the

usual 26-letter alphabet. To send the message ”YES” to a user A with

enciphering key (nA, eA) = (46927, 39423), we first find the numerical

equivalent of ”YES,” namely: 24 · 262 + 4 · 26 + 18 = 16346, and then

compute 1634639423 mod 46927, which is 21166 = 1·263+5·262+8·26+2 =

”BFIC.”

The recipient A knows the deciphering key (nA, dA) = (46927, 26767),

and so computes 2116626767 mod 46927 = 16346 =”YES.” How did user

A generate her keys? First, she multiplied the primes pA = 281 and

qA = 167 to get nA; then she chose eA at random (but subject to the

condition that g.c.d.(eA, 280) = g.c.d.(eA, 166) = 1). Then she found

dA = e−1
A mod 280 · 166. The numbers pA, qA, dA remain secret.

Here, the most time-consuming step is modular exponentiation,

e.g.,1634639423 mod 46927 . But this can be done by the repeated squar-

ing method (see section 2.1) in O(k3) bit operations, where k is the num-

ber of bits in our integers. Actually, if we were working with much larger

174

integers, potentially the most time-consuming step would be for each user

A to find two very large primes pA and qA. In order to quickly choose

suitable very large primes, one must use an efficient primality test.

Remark 5.2.3. In choosing p and q, user A should take care to see that

certain conditions hold. The most important are: that the two primes

not be too close together (for example, one should be a few decimal digits

longer than the other); and that p− 1 and q− 1 have a fairly small g.c.d.

and both have at least one large prime factor. Some of the reasons for

these conditions are indicated in the exercises below. Of course, if someone

discovers a factorization method that works quickly under certain other

conditions on p and q, then future users of RSA would have to take care

to avoid those conditions as well.

Remark 5.2.4. In section 2.1 we saw that, when n is a product of two

primes p and q, knowledge of ϕ(n) is equivalent to knowledge of the

factorization. Let’s suppose now that we manage to break an RSA system

by determining a positive integer d such that aed ≡ a mod n for all a

prime to n. This is equivalent to ed − 1 being a multiple of the least

common multiple of p − 1 and q − 1. Knowing this integer m = ed − 1

is weaker than actually knowing ϕ(n). But we now give a procedure that

with a high probability is nevertheless able to use the integer m to factor

n.

So suppose we know n – which is a product of two unknown primes -

and also an integer m such that am ≡ 1 mod n for all a prime to n. Notice

175

that any such m must be even (as we see by taking a = −1). We first

check whether m/2 has the same property, in which case we can replace

m by m/2. If am/2 is not ≡ 1 mod n for all a prime to n, then we must

have am/2 6≡ 1 mod n for at least 50% of the a′s in (Z/nZ)∗. Thus, if we

test several dozen randomly chosen a′s and find that in all cases am/2 ≡ 1

mod n, then with very high probability we have this congruence for all a

prime to n, and so may replace m by m/2. We keep on doing this until we

no longer have the congruence when we take half of the exponent. There

are now two possibilities:

(i) m/2 is a multiple of one of the two numbers p− 1, q − 1 (say, p− 1)

but not both. In this case am/2 is always ≡ 1 mod p but exactly 50% of

the time is congruent to −1 rather than +1 modulo q.

(ii) m/2 is not a multiple of either p− 1 or q − 1. In this case am/2 is ≡

1 modulo both p and q (and hence modulo n) exactly 25% of the time,

it is ≡ −1 modulo both p and q exactly 25% of the time, and for the

remaining 50% of the values of a it is ≡ 1 modulo one of the primes and

≡ −1 modulo the other prime.

Thus, by trying a′s at random with high probability we will soon find

an a for which am/2 − 1 is divisible by one of the two primes (say, p) but

not the other. (Each randomly selected a has a 50% chance of satisfying

this statement.) Once we find such an a we can immediately factor n,

because g.c.d.(n, am/2 − 1) = p.

The above procedure is an example of a probabilistic algorithm.

176

Remark 5.2.5. How do we send a signature in RSA? When discussing

authentication in the last section, we assumed for simplicity that P = C.

We have a slightly more complicated set-up in RSA. Here is one way

to avoid the problem of different n′As and different blocks sizes (k, the

number of letters in a plaintext message unit, being less than `, the num-

ber of letters in a ciphertext message unit). Suppose that, as in the last

section, Alice is sending her signature (some plaintext P) to Bob. She

knows Bob’s enciphering key KE,B = (nB, eB) and her own deciphering

key KD,A = (nA, dA). What she does is send fBf
−1
A (P) if nA < nB, or

else f−1
A fB(P) if nA > nB. That is, in the former case she takes the least

positive residue of P dA modulo nA; then, regarding that number modulo

nB, she computes (P dA mod nA)eB mod nB, which sends as a ciphertext

message unit. In this case nA > nB, she first computes P eB mod nB and

then, working modulo nA, she raises this to the dA-th power. Clearly, Bob

can verify the authenticity of the message in the first case by raising to

the dB-th power modulo nB and then to the eA-th power modulo nA; in

the second case he does these two operations in the reverse order.

Let Us Sum Up

• ”RSA” cryptosystem is one of the oldest and most popular public

key cryptosystems, based on the tremendous difficulty of factoring.

• In the RSA cryptosystem we need a random number generator not

only to choose e, but also to choose the large primes p and q.

177

• The enciphering transformation is the map from Z/nAZ to itself

given by f(P) ≡ P eA mod nA. The deciphering transformation is

the map from Z/nAZ to itself given by f−1(C) ≡ CdA mod nA.

Check your progress 5.2

1. How RSA works?

2. What is random-number generator?

Unit Summaary

In this unit we have discussed about the idea of public key cryptography.

Also we have studied about Trapdoor function, Classical versus public

key, Authentication, Hash functions, Key exchange and Probabilistic En-

cryption.

Glossary

Trapdoor function - A function that is easy to compute forward

but hard to reverse.

One-way cipher - A cryptographic algorithm that transforms

input data into hash.

Exercise 5.

1. Suppose that m users want to be able to communicate with one an-

other using a classical cryptosystem. Each user insists on being able

178

to communicate with each other user without the remaining m − 2

users eavesdropping. How many keys K = (KE, KD) must be de-

veloped? How many keys are needed if they are using a public key

cryptosystem? How many keys are needed for each type of cryp-

tosystem if m = lOOO?

2. Suppose that the following 40-letters is used for all plaintexts and

ciphertexts: A -Z with numerical equivalents 0-25, blank=26, .=27,

?=28, $=29, the numerals 0-9 with numerical equivalents 30-39. Sup-

pose that plaintext message units are digraphs and ciphertext mes-

sage units are trigraphs (i.e., k = 2, ` = 3, 402 < nA < 403 for all

nA).

(a) Send the message ”SEND $7500” to a user whose enciphering key

is (nA, eA) = (2047, 179).

(b) Break the code by factoring nA and then computing the deci-

phering key nA, dA).

(c) Explain why, even without factoring nA, a codebreaker could find

the deciphering key rather quickly. In other words, why (in addition

to its small size) is 2047 a particularly bad choice for nA?

3. Try to break the code whose enciphering key is

(nA, eA) = (536813567, 3602561). Use a computer to factor nA by

the stupidest known algorithm, i.e., dividing by all odd numbers 3,

5, 7,· · · . If you don’t have a computer available, try to guess a

prime factor of nA by trying special classes of prime numbers. After

179

factoring nA, find the deciphering key. Then decipher the message

BNBPPKZAVQZLBJ, under the assumption that the plaintext con-

sists of 6-letter blocks in the usual 26-letter alphabet (converted to

an integer between 0 and 266−1 in the usual way) and the ciphertext

consists of 7-letter blocks in the same alphabet. It should be clear

from this exercise that even a 29-bit choice of nA is far too small.

4. Suppose that both plaintexts and ciphertexts consist of trigraph mes-

sage units, but while plaintexts are written in the 27-letter alphabet

(consisting of A-Z and blank=26), ciphertexts are written in the 28-

letter alphabet obtained by adding the symbol ”/” (with numerical

equivalent 27) to the 27-letter alphabet. We require that each user A

choose nA between 273 = 19683 and 283 = 21952, so that a plaintext

trigraph in the 27-letter alphabet corresponds to a residue P modulo

nA, and then C = P eA mod nA corresponds to a ciphertext trigraph

in the 28-letter alphabet.

(a) If your deciphering key is KD = (n, d) = (21583, 20787), decipher

the message ”YSNAUOZHXXH ” (one blank at the end).

(b) If in part (a) you know that ϕ(n) = 21280, find (i)e = d−1

mod ϕ(n), and (ii) the factorization of n.

5. Let n be any squarefree integer (i.e., product of distinct primes). Let

d and e be positive integers such that de− 1 is divisible by p− 1 for

every prime divisor p of n. (For example, this is the case if de ≡ 1

mod ϕ(n).) Prove that ade ≡ a mod n for any integer a (whether

180

or not it has a common factor with n).

6. Prove the statements in Remark 5.2.4 about the percent of the time

the different congruences for am/2 occur in cases (i) and (ii).

Answers :

Check your progress 5.1

1. The enciphering transformation can then be described by (i) an al-

gorithm, which is the same for the whole family, and (ii) the values

of the parameters.

2. The enciphering function f : P −→ C is easy to compute once the en-

ciphering key KE is known, but it is very hard in practice to compute

the inverse function f−1 : C −→ P . That is, from the standpoint of

realistic computability, the function f is not invertible (without some

additional information - the deciphering key KD). Such a function

f is called a trapdoor function. That is, a trapdoor function f is

a function which is easy to compute but whose inverse f−1 is hard

to compute without having some additional auxiliary information

beyond what is necessary to compute f .

3. Classical cryptosystem (also called a private key cryptosys-

tem or a symmetrical cryptosystem), we mean a cryptosystem

in which, once the enciphering information is known, the deciphering

transformation can be implemented in approximately the same order

of magnitude of time as the enciphering transformation.

181

4. A common way to sign a document is with the help of a hash func-

tion. Roughly speaking, a hash function is an easily computable

map f : x 7→ h from a very long input x to a much shorter output

h (for example, from strings of about 106 bits to strings of 150 or

200 bits) that has the following property: it is not computationally

feasible to find two different inputs x and x′ such that f(x′) = f(x).

5. Deterministic encryption has two disadvantages: (1) if an eavesdrop-

per knows that the plaintext message belongs to a small set (for

example, the message is either ”yes” or ”no”), then she can simply

encrypt all possibilities in order to determine which is the supposedly

secret message; and (2) it seems to be very difficult to prove anything

about the security of a system if the encryption is deterministic.

Check your progress 5.2

1. Each user first chooses two extremely large prime numbers p and q

(say, of about 100 decimal digits each), and sets n = pq. Knowing

the factorization of n, it is easy to compute ϕ(n) = (p− l)(q − 1) =

n+ 1− p− q. Next, the user randomly chooses an integer e between

1 and ϕ(n) which is prime to ϕ(n).

2. A computer program that generates a sequence of digits in a way

that no one could duplicate or predict, and which is likely to have

all of the statistical properties of a truly random sequence.

Exercise 5.

182

1.

m
2

 = m(m − 1)/2 for classical; m for public key; 499500 versus

1000 when m = 1000.

2. (a) BH A 2AUCAJEARO; (b) 2047 = 23 ·89 (see Example) dA =

411; (c) since ϕ(23) and ϕ(89) have small least common multiple 88,

any inverse of 179 modulo 88 will work as dA (e.g., 59).

3. nA is the product of the Mersenne prirne 8191 and the Fermat prime

65537 - a flamboyantly bad choice; dA = 201934721; ”DUMPTHE-

STOCK.”

4. (a) STOP PAYMENT; (b) (i) 6043; (ii) n = 113 · 191.

5. It suffices to prove that ade ≡ a mod p for any integer a and each

prime divisor p of n. This is obvious if p|a; otherwise use Fermat’s

Little Theorem (Proposition 2.1.8).

6. If m/2 = (p− l)/2 mod p− 1, then am/2 ≡
(
a
p

)
, which is +1 half the

time and −1 half the time. In case (ii), use the Chinese Remainder

Theorem to show that the probability that an element in (Z/nZ)∗ is

a residue modulo p and the probability that it is a residue modulo q

are independent of one another, i.e., the situation in case (ii) is like

two independent tosses of a coin.

References:

1. Neal Koblit, A course in Number Theory and Cryptography, Springer

- Verlag, New York, 2nd edition, 2002.

183

Suggested Reading:

1. I. Niven and H. S. Zuckermann, An Introduction to Theory of Num-

bers (Edition 3), Wiley Eastern Ltd, New Delhi 1976

2. D. M. Burton, Elementary Number Theory, Brown Publishers, Iowa,

1989

3. K. Ireland and M. Rosen, A classic Introduction to Modern Number

Theory, Springer - Verlag, 1972

4. N. Koblit, Algebraic Aspects of Cryptography, Springer-Verlag, 1998.

184

	Front NT
	Number Theory and Cryptography final
	Elementary Number Theory-I
	Time estimates for doing arithmetic
	Divisibility and the Euclidean algorithm

	Elementary Number Theory-II
	Congruences
	Some applications to factoring

	Finite Fields and Quadratic Residues
	Basic definitions and Properties of a field.
	Finite Fields
	Quadratic residues and reciprocity

	Cryptography
	Some simple cryptosystems.
	Enciphering Matrices

	Public Key Cryptography
	The idea of public key cryptography.
	RSA

